Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation.
نویسندگان
چکیده
Papillomaviruses are small DNA viruses that are associated with benign and malignant epithelial lesions, including >95% of cervical cancers and approximately 20% of head and neck cancers. Because papillomavirus replication and virion production are tied to epithelial cell differentiation, infectious papillomavirus virion production has been limited to cumbersome organotypic cultures and mouse xenografts. Consequent difficulties in obtaining useful amounts of wild-type or mutant human papillomavirus (HPV) virions have greatly limited studies on many aspects of papillomavirus biology. To overcome these limitations, we developed a system to encapsidate the full-length papillomaviral genome into infectious virions, independently of viral DNA replication and epithelial differentiation. This transient-transfection-based system produces >1,000 times more infectious virus per cell culture dish than the much more labor-intensive organotypic culture. Furthermore, we show that this method allows the facile generation of infectious particles containing wild-type, mutant, or chimeric papillomaviral genomes, overcoming barriers to studying many facets of replication, host interactions, and vaccine and drug development, which has been limited by the insufficient availability of infectious virions.
منابع مشابه
The papillomavirus life cycle.
Papillomaviruses infect epithelial cells, and depend on epithelial differentiation for completion of their life cycle. The expression of viral gene products is closely regulated as the infected basal cell migrates towards the epithelial surface. Expression of E6 and E7 in the lower epithelial layers drives cells into S-phase, which creates an environment that is conducive for viral genome repli...
متن کاملHuman Papillomavirus E2 Regulates SRSF3 (SRp20) To Promote Capsid Protein Expression in Infected Differentiated Keratinocytes.
UNLABELLED The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the infected epithelial cell, suggesting a sophisticated interplay between host cell metabolism and virus replication. Previously, we demonstrated in differentiated keratinocytes in vitro and in vivo that HPV type 16 (HPV16) infection caused increased levels of the cellular SR splicing factors (SRSFs) S...
متن کاملRNA-Seq Analysis of Differentiated Keratinocytes Reveals a Massive Response to Late Events during Human Papillomavirus 16 Infection, Including Loss of Epithelial Barrier Function
The human papillomavirus (HPV) replication cycle is tightly linked to epithelial cell differentiation. To examine HPV-associated changes in the keratinocyte transcriptome, RNAs isolated from undifferentiated and differentiated cell populations of normal, spontaneously immortalised, keratinocytes (NIKS), and NIKS stably transfected with HPV16 episomal genomes (NIKS16), were compared using RNASeq...
متن کاملPropagation of infectious human papillomavirus type 16 by using an adenovirus and Cre/LoxP mechanism.
Human papillomavirus type 16 (HPV16) infection is a major risk factor for the development of squamous cell cancers of the cervix and of the head and neck. A major barrier to understanding the progression from initial infection to cancer has been the lack of in vitro models that allow infection, replication, and persistence of the viral genome as an episome in differentiated epithelial cells. To...
متن کاملEvidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle.
The study of human papillomavirus type 16 (HPV-16) replication has been impaired because of the lack of a cell culture system that stably maintains viral replication. Recently, cervical epithelial cell populations that stably maintain HPV-16 replicons at a copy number of approximately 1,000 per cell were derived from an HPV-16-infected patient (W12 cell clone 20863 [W12-E cells]). We used neutr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 26 شماره
صفحات -
تاریخ انتشار 2005