V Turaev, Poincaré-Reidemeister metric, Euler structures, and torsion
نویسنده
چکیده
In this paper we define a Poincaré-Reidemeister scalar product on the determinant line of the cohomology of any flat vector bundle over a closed orientable odd-dimensional manifold. It is a combinatorial “torsion-type” invariant which refines the PR-metric introduced in [Fa] and contains an additional sign or phase information. We compute the PR-scalar product in terms of the torsions of Euler structures, introduced in [T1], [T2]. We show that the sign of our PR-scalar product is determined by the Stiefel-Whitney classes and the semi-characteristic of the manifold. As an application, we compute the Ray-Singer analytic torsion via the torsions of Euler structures. Another application: a computation of the twisted semi-characteristic in terms of the Stiefel-Whitney classes. §
منابع مشابه
ar X iv : m at h / 98 03 13 7 v 2 [ m at h . D G ] 1 6 M ay 1 99 8 POINCARÉ - REIDEMEISTER METRIC , EULER STRUCTURES , AND TORSION
In this paper we define a Poincaré-Reidemeister scalar product on the determinant line of the cohomology of any flat vector bundle over a closed orientable odd-dimensional manifold. It is a combinatorial “torsion-type” invariant which refines the PR-metric introduced in [Fa] and contains an additional sign or phase information. We compute the PR-scalar product in terms of the torsions of Euler ...
متن کاملF eb 2 00 5 EULER STRUCTURES , THE VARIETY OF REPRESENTATIONS AND THE MILNOR – TURAEV TORSION DAN
In this paper we extend, and Poincaré dualize, the concept of Euler structures, introduced by Turaev for manifolds with vanishing Euler–Poincaré characteristic, to arbitrary manifolds. We use the Poincaré dual concept, coEuler structures, to remove all geometric ambiguities from the Ray–Singer torsion by providing a slightly modified object which is a topological invariant. We show that when th...
متن کاملEuler structures, the variety of representationsand the Milnor--Turaev torsion
In this paper we extend, and Poincaré dualize, the concept of Euler structures, introduced by Turaev for manifolds with vanishing Euler– Poincaré characteristic, to arbitrary manifolds. We use the Poincaré dual concept, co-Euler structures, to remove all geometric ambiguities from the Ray–Singer torsion by providing a slightly modified object which is a topological invariant. We show that the m...
متن کاملA Canonical Quadratic Form on the Determinant Line of a Flat Vector Bundle
Abstract. We introduce and study a canonical quadratic form, called the torsion quadratic form, of the determinant line of a flat vector bundle over a closed oriented odd-dimensional manifold. This quadratic form caries less information than the refined analytic torsion, introduced in our previous work, but is easier to construct and closer related to the combinatorial Farber-Turaev torsion. In...
متن کاملTorsion, as a Function on the Space of Representations
For a closed manifold M we introduce the set of co-Euler structures as Poincaré dual of Euler structures. The Riemannian Geometry, Topology and Dynamics on manifolds permit to introduce partially defined holomorphic functions on RepM (Γ;V ) called in this paper complex valued Ray–Singer torsion, Milnor–Turaev torsion, and dynamical torsion. They are associated essentially to M plus an Euler (or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008