Does intensity modulation increase target dose calculation errors of conventional algorithms for lung SBRT?
نویسندگان
چکیده
PURPOSE Conventional dose algorithms (Type A and Type B) for lung SBRT can display considerable target dose errors compared to Type-C algorithms. Intensity-modulated techniques (IMRT/VMAT) are increasingly being utilized for lung SBRT. Therefore, our study aimed to assess whether intensity modulation increased target dose calculation errors by conventional algorithms over conformal techniques. METHODS Twenty lung SBRT patients were parallely planned with both IMRT and dynamic conformal arc (DCA) techniques using a Type-A algorithm, and another 20 patients were parallely planned with IMRT, VMAT, and DCA using a Type-B algorithm. All 100 plans were recalculated with Type-C algorithms using identical beam and monitor unit settings, with the Type-A/Type-B algorithm dose errors defined using Type-C recalculation as the ground truth. Target dose errors for PTV and GTV were calculated for a variety of dosimetric end points. Using Wilcoxon signed-rank tests (p < 0.05 for statistical significance), target dose errors were compared between corresponding IMRT/VMAT and DCA plans for the two conventional algorithms. The levels of intensity modulation were also evaluated using the ratios of MUs in the IMRT/VMAT plans to those in the corresponding DCA plans. Linear regression was used to study the correlation between intensity modulation and relative dose error magnitudes. RESULTS Overall, larger errors were found for the Type-A algorithm than for the Type-B algorithm. However, the IMRT/VMAT plans were not found to have statistically larger dose errors from their corresponding DCA plans. Linear regression did not identify a significant correlation between the intensity modulation level and the relative dose error. CONCLUSION Intensity modulation did not appear to increase target dose calculation errors for lung SBRT plans calculated with conventional algorithms.
منابع مشابه
The evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy
Background: Radiation Pneumonia (RP) is one of the most extensive side effects in Stereotactic Body Radiotherapy (SBRT) of lung cancer. SBRT are performed by means of Intensity Modulated Radiotherapy (IMRT), Intensity Modulated Arc Therapy (IMAT), CyberKnife (CK) or Helical Tomotherapy (HT) treatment methods. In this study, we performed a plan study to determine the plan parameter such as the M...
متن کاملInvestigation of Freedom-Degrees impact on Modulation of Radiation
Introduction: Nowadays tendency to apply more degrees of freedom in high-tech radiotherapy systems, and consequent complex process to optimize dose calculation and delivery algorithms, is a challenge of radiation therapy optimization. Faster MLC speed, dose rate, Gantry angle variation, and other degrees, which have been utilized in IMRT, IMAT, VMAT, improved modulation of inte...
متن کاملPractical methods for improving dose distributions in Monte Carlo‐based IMRT planning of lung wall‐seated tumors treated with SBRT
Current commercially available planning systems with Monte Carlo (MC)-based final dose calculation in IMRT planning employ pencil-beam (PB) algorithms in the optimization process. Consequently, dose coverage for SBRT lung plans can feature cold-spots at the interface between lung and tumor tissue. For lung wall (LW)-seated tumors, there can also be hot spots within nearby normal organs (example...
متن کاملA comprehensive dosimetric study on switching from a Type-B to a Type-C dose algorithm for modern lung SBRT
BACKGROUND Type-C dose algorithms provide more accurate dosimetry for lung SBRT treatment planning. However, because current dosimetric protocols were developed based on conventional algorithms, its applicability for the new generation algorithms needs to be determined. Previous studies on this issue used small sample sizes and reached discordant conclusions. Our study assessed dose calculation...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2018