Geometry of Grushin Spaces

نویسنده

  • JANG-MEI WU
چکیده

We compare the Grushin geometry to Euclidean geometry, through quasisymmetric parametrization, bilipschitz parametrization and bilipschitz embedding, highlighting the role of the exponents and the fractal nature of the singular hyperplanes in Grushin geometry. Consider in Rn a system of diagonal vector fields Xj = λj(x) ∂ ∂xj , j = 1, . . . , n,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity and Exponential Growth of Pullback Attractors for Semilinear Parabolic Equations Involving the Grushin Operator

and Applied Analysis 3 The content of the paper is as follows. In Section 2, for the convenience of the reader, we recall some concepts and results on function spaces and pullback attractors which we will use. In Section 3, we prove the existence of pullback attractors in the spaces S0 Ω and L2p−2 Ω by using the asymptotic a priori estimate method. In Section 4, under additional assumptions of ...

متن کامل

A finite element approximation for a class of degenerate elliptic equations

In this paper we exhibit a finite element method fitting a suitable geometry naturally associated with a class of degenerate elliptic equations (usually called Grushin type equations) in a plane region, and we discuss the related error estimates.

متن کامل

Bilipschitz Embedding of Grushin Plane in R3

The Grushin plane is bilipschitz homeomorphic to a quasiplane in R

متن کامل

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

On the Grushin Operator and Hyperbolic Symmetry

Complexity of geometric symmetry for differential operators with mixed homogeniety is examined here. Sharp Sobolev estimates are calculated for the Grushin operator in low dimensions using hyperbolic symmetry and conformal geometry. Considerable interest exists in understanding differential operators with mixed homogeneity. A simple example is the Grushin operator on R ∆G = ∂ ∂t2 + 4t ∂ ∂x2 . T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015