Predicting Dropout from Online Education based on Neural Networks

نویسندگان

  • Mingjie Tan
  • Peiji Shao
چکیده

While online education keeps expanding, web-based institutions face high dropout rate, pushing costs up and making a negative social impact. Based on the analysis of existing research, personal characteristics and learning behavior were selected as input variables to train a dropout prediction model using neural network algorithm. The outcomes of prediction model were analyzed by calculating the rates of accuracy, precision, and precision. The results suggest this method is effective in identifying potential dropouts, and can help the online education institutions prevent dropout.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Dropout in Online Courses: Comparison of Classification Techniques

Due to the tremendous growth in e-learning in recent years, there is a need to address the issue of attrition in online courses. Predictive modeling can help identify students who may be “at-risk” to drop out from an online course. This study examines various categorical classification algorithms and evaluates the accuracy of logistic regression (LR), neural networks (Multilayer Perceptron), an...

متن کامل

Shared Task on Prediction of Dropout Over Time in Massively Open Online Courses

The shared task on Prediction of Dropout Over Time in MOOCs involves analysis of data from 6 MOOCs offered through Coursera. Data from one MOOC with approximately 30K students was distributed as training data and consisted of discussion forum data (in SQL) and clickstream data (in JSON format). The prediction task was Predicting Attrition Over Time. Based on behavioral data from a week’s worth ...

متن کامل

Massive Open Online Courses Temporal Profiling for Dropout Prediction

Massive Open Online Courses (MOOCs) are attracting the attention of people all over the world. Regardless the platform, numbers of registrants for online courses are impressive but in the same time, completion rates are disappointing. Understanding the mechanisms of dropping out based on the learner profile arises as a crucial task in MOOCs, since it will allow intervening at the right moment i...

متن کامل

DIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES

The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...

متن کامل

From participation to dropout: Quantitative participation patterns in online university courses

Personal use of this manuscript is permitted. Permission from Elsevier must be obtained for any other commercial purpose. This article may not exactly replicate the published version, due to editorial changes and/or formatting and corrections during the final stage of publication. Interested readers are advised to consult the published version which can be found at:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015