The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment.
نویسندگان
چکیده
The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.
منابع مشابه
Antithrombin Regulates Matriptase Activity Involved in Plasmin Generation, Syndecan Shedding, and HGF Activation in Keratinocytes
Matriptase, a membrane-associated serine protease, plays an essential role in epidermal barrier function through activation of the glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin. The matriptase-prostasin proteolytic cascade is tightly regulated by hepatocyte growth factor activator inhibitor (HAI)-1 such that matriptase autoactivation and prostasin activation occur simult...
متن کاملMechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues
Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent a...
متن کاملLoss of hepatocyte growth factor activator inhibitor type 1 participates in metastatic spreading of human pancreatic cancer cells in a mouse orthotopic transplantation model
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound serine protease inhibitor that is expressed on the surface of epithelial and carcinoma cells. On the cell surface, HAI-1 regulates membrane-anchored serine proteases, with matriptase being the most critical target. Matriptase is involved in pericellular processing of biologically active molecules, including protease...
متن کاملPericellular proteases in angiogenesis and vasculogenesis.
Pericellular proteases play an important role in angiogenesis and vasculogenesis. They comprise (membrane-type) matrix metalloproteinases [(MT-)MMPs], serine proteases, cysteine cathepsins, and membrane-bound aminopeptidases. Specific inhibitors regulate them. Major roles in initiating angiogenesis have been attributed to MT1-matrix metalloproteinase (MMP), MMP-2, and MMP-9. Whereas MT-MMPs are...
متن کاملComplex Regulation of the Pericellular Proteolytic Microenvironment during Tumor Progression and Wound Repair: Functional Interactions between the Serine Protease and Matrix Metalloproteinase Cascades
Spatial and temporal regulation of the pericellular proteolytic environment by local growth factors, such as EGF and TGF-β, initiates a wide repertoire of cellular responses coupled to a plasmin/matrix metalloproteinase (MMP) dependent stromal-remodeling axis. Cell motility and invasion, tumor metastasis, wound healing, and organ fibrosis, for example, represent diverse events controlled by exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 428 3 شماره
صفحات -
تاریخ انتشار 2010