The murine Cl / HCO 3 ( - ) exchanger Ae 3 ( Slc 4 a 3 ) is not required for acid - base balance but is involved in magnesium handling by the kidney

نویسندگان

  • Nicole B. Kampik
  • Nicole Gehring
  • Udo Schnitzbauer
  • Christian A. Hübner
  • Carsten A. Wagner
چکیده

Background: The Slc4 family of bicarbonate transporters consists of several members, many of which are highly expressed in the kidney and play an important role in acid-base homeostasis. Among them are Ae1 (Slc4a1) and Ae2 (Slc4a2). Another member, Ae3 (Slc4a3), is suggested to be expressed in the kidney, however, its localization and impact on renal function is still unknown. Ae3 has also been implicated in the central control of breathing. Aims: Here, we analyzed the expression of Ae3 transcripts in isolated nephron segments and investigated systemic and renal acid-base homeostasis and renal electrolyte handling in the absence of Ae3, using a knock out mouse model. Methods: qPCR was used to localize Ae3 transcripts in the murine nephron, metabolic studies and whole body plethysmography to assess the role of Ae3 in renal functions. Results: Two Ae3 transcripts, the brain variant bAe3 and the cardiac variant cAe3, are expressed at low levels in the murine kidney. Although differentially distributed, they localize mostly to the distal nephron and renal collecting duct system. At baseline and after an acid challenge, mice deficient for Ae3 did not show major disturbances in renal acid-base excretion. Respiratory responses in whole body plethysmography to acid loading and CO2 and O2 challenges were normal. No major differences in renal electrolyte handling were discovered except for small changes in magnesium, potassium and sodium excretion after 7 days of acid loading. We therefore challenged mice with diets with high and low magnesium diets and found no differences in renal magnesium excretion but elevated expression of the Trpm6 magnesium channel in Ae3 KO mice. In conclusion, Ae3 is expressed in murine kidney at very low levels. Conclusions: Ae3 plays no role in systemic acid-base homeostasis but may modify renal magnesium handling inducing a higher expression of Trpm6. DOI: https://doi.org/10.1159/000366360 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-101136 Accepted Version Originally published at: Kampik, Nicole B; Gehring, Nicole; Schnitzbauer, Udo; Hennings, J Christopher; Hübner, Christian A; Wagner, Carsten A (2014). The murine Cl/HCO3(-) exchanger Ae3 (Slc4a3) is not required for acid-base balance but is involved in magnesium handling by the kidney. Cellular Physiology and Biochemistry, 34(5):1566-1577. DOI: https://doi.org/10.1159/000366360

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The murine Cl⁻/HCO⁻₃ exchanger Ae3 (Slc4a3) is not required for acid-base balance but is involved in magnesium handling by the kidney.

BACKGROUND The Slc4 family of bicarbonate transporters consists of several members, many of which are highly expressed in the kidney and play an important role in acid-base homeostasis. Among them are Ae1 (Slc4a1) and Ae2 (Slc4a2). Another member, Ae3 (Slc4a3), is suggested to be expressed in the kidney, however, its localization and impact on renal function is still unknown. Ae3 has also been ...

متن کامل

Enhanced formation of a HCO3- transport metabolon in exocrine cells of Nhe1-/- mice.

Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired f...

متن کامل

Regulation of the Cl-/HCO3- exchanger AE2 in rat thick ascending limb of Henle's loop in response to changes in acid-base and sodium balance.

The Cl(-)/HCO(3)(-) exchanger AE2 is believed to be involved in transcellular bicarbonate reabsorption that occurs in the thick ascending limb of Henle's loop (TAL). The purpose of this study was to test whether chronic changes in acid-base status and sodium intake regulate AE2 polypeptide abundance in the TAL of the rat. Rats were subjected to 6 d of loading with NaCl, NH(4)Cl, NaHCO(3), KCl, ...

متن کامل

Bicarbonate secretion of mouse cholangiocytes involves Na(+)-HCO(3)(-) cotransport in addition to Na(+)-independent Cl(-)/HCO(3)(-) exchange.

UNLABELLED Bicarbonate secretion from cholangiocytes is required for appropriate adjustment of primary canalicular bile along the biliary tract. In human and rat cholangiocytes, bicarbonate secretion is mediated by anion exchanger (AE) 2, an electroneutral Na(+)-independent Cl(-)/HCO(3) (-) AE also involved in intracellular pH (pH(i)) regulation. In Ae2(a,b)-deficient mice, pH(i) is increased i...

متن کامل

Thyroid hormone deficiency alters expression of acid-base transporters in rat kidney.

Hypothyroidism in humans is associated with incomplete distal renal tubular acidosis, presenting as the inability to respond appropriately to an acid challenge by excreting less acid. Here, we induced hypothyroidism in rats with methimazole (HYPO) and in one group substituted with l-thyroxine (EU). After 4 wk, acid-base status was similar in both groups. However, after 24 h acid loading with NH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017