Renal Effects of Antisense-Mediated Inhibition of SGLT2.
نویسندگان
چکیده
ISIS 388626 is an antisense sodium-glucose cotransporter 2 (SGLT2) inhibitor designed to treat type 2 diabetes mellitus by induction of glucosuria. ISIS 388626 was demonstrated to be safe and effective in preclinical trails in several species. We undertook the present study to evaluate the safety and efficacy of 13 weekly doses of 50, 100, and 200 mg of ISIS 388626 in humans. ISIS 388626 increased 24-hour urinary glucose excretion dose dependently with 508.9 ± 781.45 mg/day in the 100-mg and 1299.8 ± 1833.4 mg/day in the 200-mg cohort, versus 88.7 ± 259.29 mg/day in the placebo group. ISIS 388626 induced a reversible increase in serum creatinine, with the largest effect after eight doses of ISIS 388626 (200 mg; 0.38 ± 0.089 mg/dl; 44% increase over baseline). Three subjects were discontinued as a result of creatinine increases. The renal clearance test revealed no indications for impairment of glomerular filtration or renal perfusion. The creatinine increases were accompanied by a rise in the levels of urinary renal damage markers [β-2-microglobulin (B2M), total protein, kidney injury molecule (KIM1), α-glutathione S-transferase (aGST), N-acetyl-β-(d)-glucosaminidase (NAG)]. Other treatment-related adverse events included mild injection site reactions occurring in 8-19% of the subjects. In conclusion, ISIS 388626 treatment induced glucosuria at a dose level of 200 mg/week. This intended pharmacological effect was small, amounting to approximately 1% of the total amount of filtered glucose. Changes in serum and urinary markers were indicative of transient renal dysfunction, most probably of tubular origin. Whether the glucosuria is caused by specific SGLT2 inhibition or general tubular dysfunction or a combination remains uncertain.
منابع مشابه
Novel SGLT2 inhibitor: first‐in‐man studies of antisense compound is associated with unexpected renal effects
The antisense compound ISIS 388626 selectively inhibits renal glucose reabsorption by inhibiting the sodium-glucose cotransporter-2 (SGLT2) mRNA expression. It is developed as an insulin-independent treatment approach for type 2 diabetes mellitus (T2DM). The safety, tolerability, pharmacokinetics, and pharmacodynamics after subcutaneous administration of the drug were planned to be evaluated in...
متن کاملPharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2.
ISIS 388626, a 2'-methoxyethyl (MOE)-modified antisense oligonucleotide (ASO) that targets human sodium glucose cotransporter 2 (SGLT2) mRNA, is in clinical trials for the management of diabetes. SGLT2 plays a pivotal role in renal glucose reabsorption, and inhibition of SGLT2 is anticipated to reduce hyperglycemia in diabetic subjects by increasing urinary glucose elimination. To selectively i...
متن کاملUse of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans
In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibit...
متن کاملDapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury
Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 359 2 شماره
صفحات -
تاریخ انتشار 2016