A Variational Calculus Approach to Optimal Checkpoint Placement

نویسندگان

  • Yibei Ling
  • Jie Mi
  • Xiaola Lin
چکیده

ÐCheckpointing is an effective fault-tolerant technique for improving system availability and reliability. However, a blind checkpointing placement can result in either performance degradation or expensive recovery cost. By means of the calculus of variations, we derive an explicit formula that links the optimal checkpointing frequency with a general failure rate, with the objective of globally minimizing the total expected cost of checkpointing and recovery. Theoretical result shows that the optimal checkpointing frequency is proportional to the square root of the failure rate and can be uniquely determined by the failure rate (time-varying or constant) if the recovery function is strictly increasing and the failure rate is …1† > 0. Bruno and Coffman [2] suggest that optimal checkpointing by its nature is a function of system failure rate, i.e., the time-varying failure rate demands time-varying checkpointing in order to meet the criteria of certain optimality. The results obtained in this paper agree with their viewpoint. Index TermsÐAperiodic checkpointing, periodic checkpointing, system failure rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hartley Series Direct Method for Variational Problems

The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...

متن کامل

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

Optimal Control Methods and the Variational Approach to Differential Equations

The calculus of variations is an important tool in the study of boundary value problems for differential systems. A development of this approach, called the control variational method, is based on the use of the optimal control theory, especially of the Pontryagin maximum principle. In this presentation, we review the results established in the literature on the control variational method and i...

متن کامل

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

Long-term Planning of Optimal Placement of Distribution Transformers to Improve Reliability and Power Quality with the Approach of Reducing Costs and Losses

One of the most critical and complex issues in long-term planning of distribution networks is the optimal placement of distribution transformers. In this paper, the optimal placement of distribution transformers was investigated based on a complete and multi-objective function. In the proposed method, location, optimal capacity, and the service area are determined by minimizing costs (investmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Computers

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2001