Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells.

نویسندگان

  • Yaoguang Rong
  • Swaminathan Venkatesan
  • Rui Guo
  • Yanan Wang
  • Jiming Bao
  • Wenzhi Li
  • Zhiyong Fan
  • Yan Yao
چکیده

Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3(+)) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition pathways as a function of annealing conditions. The interdiffusion of MAI and DMSO varies strongly with the annealing temperature and time, thus determining the final film composition and morphology. A surprising finding reveals that the best performing cells contain ∼18% of the non-stoichiometric intermediate phase, instead of pure phase OTP. The presence of such an intermediate phase enables smooth surface morphology and enhances the charge carrier lifetime. Our results highlight the importance of the intermediate phase growth kinetics that could lead to large-scale production of efficient solution processed perovskite solar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer

Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...

متن کامل

Novel application of hybrid Perovskite materials in grid-connected photo-voltaic cells

In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...

متن کامل

بررسی اثر فازی آلومینا بر بلورینگی لایه پروسکایت در سلول‌های خورشید پروسکایتی

Organic-inorganic perovskite (CH3NH3PbI3), due to an appropriate energy gap to absorb sunlight, is used as an absorbent layer in third generation solar cells. Crystallinity of light absorbing layer plays an important role in the performance of perovskite solar cells and substrate plays an important role on crystallinity of light absorbing layer. In superstructure solar cells, alumina (aluminum ...

متن کامل

Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells

Organometal lead halide perovskites have been widely used as the light harvester for high-performance solar cells. However, typical perovskites of methylammonium lead halides (CH3NH3PbX3, X=Cl, Br, I) are usually sensitive to moisture in ambient air, and thus require an inert atmosphere to process. Here we demonstrate a moisture-induced transformation of perovskite crystals in a triple-layer sc...

متن کامل

A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells.

The electron transport layer (ETL) plays a critical role in high efficiency perovskite solar cells. In this study, an anodic TiO2 nanotube film was transformed into a TiO2 nanotube network film, which maintained its advantage as an efficient ETL for perovskite solar cells. Compared with the mesoporous TiO2 nanoparticle ETL, the TiO2 nanotube network ETL can increase the efficiency of perovskite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 26  شماره 

صفحات  -

تاریخ انتشار 2016