Differences in decorin expression by papillary and reticular fibroblasts in vivo and in vitro.
نویسندگان
چکیده
Immunostaining of adult human skin shows that the small dermatan sulphate proteoglycan decorin is abundant in the whole dermal layer but absent from the epidermis. In the papillary layer adjacent to the dermal-epidermal border, more decorin was detected than in the reticular layer of the dermis. Expression of decorin mRNA by cells in the papillary dermis could also be shown by in situ hybridization. In contrast, biglycan, another small chondroitin sulphate/dermatan sulphate proteoglycan, is found only at the dermal-epidermal border. Therefore the biosynthesis of these two proteoglycans by papillary and reticular fibroblasts from two different donors was compared in tissue culture. Papillary fibroblasts secrete up to 5.9 times more decorin than reticular fibroblasts, while the amounts of cell-associated decorin in both cell types are similar. By Northern blot analysis as well as by in situ hybridization it was shown that papillary fibroblasts contain more mRNA coding for decorin than do reticular cells. In addition, no mosaic pattern of decorin expression was found in the cultured cells. The expression and synthesis of biglycan compared with decorin was about 10 times lower and did not show any significant differences for the two cells types. The kinetics of secretion and the rate of endocytosis of decorin were similar for both types of fibroblasts. These results were found with fibroblasts between the 9th and 15th passage from a newborn subject as well as from a 78-year-old donor, indicating that the pattern of decorin synthesis is not age-dependent in the range investigated. These results further show that fibroblasts from different layers of the dermis have a specific pattern of synthesis of small chondroitin sulphate/dermatan sulphate proteoglycans, and they also maintain these patterns in cell culture.
منابع مشابه
بررسی اثر تماس مستقیم سلولهایT بکر با سلولهای فیبروبلاست تحریک شده با BCG بر القای سلولهایT تنظیمی
Background: Lymph node stromal fibroblasts are interconnected with TCD4+ cells and affect their phenotype and function. Understanding the nature of these interactions under unusual conditions like infections will help to their application in control and regulation of immune responses. Materials and methods: Lymph node fibroblasts were affected in BCG primed immune environment by both in-...
متن کاملP-67: Quantitative Expression of Pluripotency Specific-Genes in Mouse Blastocysts Produced by In Vitro Fertilization
Background: The efficiency of in vitro fertilization (IVF) is still low to be developed to blastocyst stage probably because of environmental conditions. It is likely that in vitro environment can not exactly mimic in vivo environment due to differences in media, metabolic content, atmospheric composition, temperature and pH. Therefore it may affect embryo quality by changing in embryo gene exp...
متن کاملAltered decorin expression of systemic sclerosis by UVA1 (340–400 nm) phototherapy: Immunohistochemical analysis of 3 cases
BACKGROUND Ultraviolet A1 (340-400 nm, UVA1) phototherapy is highly effective in sclerotic lesions of systemic sclerosis (SSc). Histological evaluation of skin specimens obtained before and after UVA1 phototherapy revealed loosening of collagen bundles and the appearance of small collagen fibers. We have previously shown that UVA1 irradiation induced collagenase in vitro study by using SSc fibr...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 290 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1993