The fate of cannibalized fundamental-plane elliptical galaxies
نویسندگان
چکیده
Evolution and disruption of galaxies orbiting in the gravitational field of a larger cluster galaxy are driven by three coupled mechanisms: 1) the heating due to its time dependent motion in the primary; 2) mass loss due to the tidal strain field; and 3) orbital decay. Previous work demonstrated that tidal heating is effective well inside the impulse approximation limit. Not only does the overall energy increase over previous predictions, but the work is done deep inside the secondary galaxy, e.g. at or inside the half mass radius in most cases. Here, these ideas applied to cannibalization of elliptical galaxies with fundamental-plane parameters. In summary, satellites which can fall to the center of a cluster giant by dynamical friction are evaporated by internal heating by the time they reach the center. This suggests that true merger-produced multiple nuclei giants should be rare. Specifically, secondaries with mass ratios as small as 1% on any initial orbit evaporate and those on eccentric orbits with mass ratios as small as 0.1% evolve significantly and nearly evaporate in a galaxian age. Captured satellites with mass ratios smaller than roughly 1% have insufficient time to decay to the center. After many accretion events, the model predicts that the merged system has a profile similar to that of the original primary with a weak increase in concentration. Subject headings: stellar dynamics — galaxies: kinematics and dynamics — galaxies: evolution — galaxies: clusters — galaxies: nuclei — galaxies: elliptical Alfred P. Sloan Foundation Fellow.
منابع مشابه
The fate of cannibalized fundamental-plane ellipticals
Evolution and disruption of galaxies orbiting in the gravitational field of a larger cluster galaxy are driven by three coupled mechanisms: 1) the heating due to its time dependent motion in the primary; 2) mass loss due to the tidal strain field; and 3) orbital decay. Previous work demonstrated that tidal heating is effective well inside the impulse approximation limit. Not only does the overa...
متن کاملMOND and the fundamental plane of elliptical galaxies
It is shown that the MOdified Newtonian Dynamics (MOND) explains the tilt of the fundamental plane of elliptical galaxies without the need of non-baryonic dark matter. Results found for elliptical galaxies extends to globular clusters and galaxy clusters, showing that MOND agrees with observations over 7 order of magnitude in acceleration.
متن کاملA SuperMassive Black Hole Fundamental Plane for Ellipticals
We obtain the coefficients of a new fundamental plane for supermassive black holes at the centers of elliptical galaxies, involving measured central black hole mass and photometric parameters which define the light distribution. The galaxies are tightly distributed around this mass fundamental plane, with improvement in the rms residual over those obtained from the MBH − σ and MBH − L relations...
متن کاملThe Fundamental Plane and merger scenario I. Star formation history of galaxy mergers and origin of the Fundamental Plane
We perform numerical simulations of galaxy mergers between star-forming and gas-rich spirals in order to explore the origin of the Fundamental Plane (FP) of elliptical galaxies. We consider particularly that the origin of the slope of the FP is essentially due to the non-homology in structure and kinematics of elliptical galaxies and accordingly investigate structural and kinematical properties...
متن کاملWeak Homology of Bright Elliptical Galaxies
Studies of the Fundamental Plane of early-type galaxies, from small to intermediate redshifts, are often carried out under the guiding principle that the Fundamental Plane reflects the existence of an underlying mass-luminosity relation for such galaxies, in a scenario where elliptical galaxies are homologous systems in dynamical equilibrium. Here I will re-examine the issue of whether empirica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017