Increasing the Performance of the Jacobi-Davidson Method by Blocking
نویسندگان
چکیده
Block variants of the Jacobi-Davidson method for computing a few eigenpairs of a large sparse matrix are known to improve the robustness of the standard algorithm when it comes to computing multiple or clustered eigenvalues. In practice, however, they are typically avoided because the total number of matrix-vector operations increases. In this paper we present the implementation of a block Jacobi-Davidson solver. By detailed performance engineering and numerical experiments we demonstrate that the increase in operations is typically more than compensated by performance gains through better cache usage on modern CPUs, resulting in a method that is both more efficient and robust than its single vector counterpart. The steps to be taken to achieve a block speed-up involve both kernel optimizations for sparse matrix and block vector operations, and algorithmic choices to allow using blocked operations in most parts of the computation. We discuss the aspect of avoiding synchronization in the algorithm and show by numerical experiments with our hybrid parallel implementation that a significant speed-up through blocking can be achieved for a variety of matrices on up to 5 120 CPU cores as long as at least about 20 eigenpairs are sought.
منابع مشابه
Performance of Block Jacobi-Davidson Eigensolvers
Jacobi-Davidson methods can efficiently compute a few eigenpairs of a large sparse matrix. Block variants of JacobiDavidson are known to be more robust than the standard algorithm, but they are usually avoided as the total number of floating point operations increases. We present the implementation of a block Jacobi-Davidson solver and show by detailed performance engineering and numerical expe...
متن کاملUnclassified Report: Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis
This report discusses the application of Jacobi-Davidson style methods in electric circuit simulation. Using the generalised eigenvalue problem, which arises from pole-zero analysis, as a starting point, both the JDQR-method and the JDQZ-method are studied. Although the JDQR-method (for the ordinary eigenproblem) and the JDQZ-method (for the generalised eigenproblem) are designed to converge fa...
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملA Jacobi–Davidson type method for the generalized singular value problem
We discuss a new method for the iterative computation of some of the generalized singular values and vectors of a large sparse matrix. Our starting point is the augmented matrix formulation of the GSVD. The subspace expansion is performed by (approximately) solving a Jacobi–Davidson type correction equation, while we give several alternatives for the subspace extraction. Numerical experiments i...
متن کاملA parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation
We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc’s efficient and various parallel operations, linear so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015