On Refinement of 2-Dimensional Grids

نویسندگان

  • Sergei Bezrukov
  • Walter Unger
چکیده

The subject of this paper are grid refinements arising in finite element methods and their embedding into grids. We concentrate on embeddings with dilation 1 and construct for a class of grid refinements their embeddings with optimal load. For general cases we show that the problem to determine the minimal load is NP-complete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows

Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...

متن کامل

Combination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows

Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...

متن کامل

Two-Dimensional Boundary-Conforming Orthogonal Grids for External and Internal Flows Using Schwarz-Christoffel Transformation

In this paper, a Schwarz-Christoffel method for generating two-dimensional grids for a variety of complex internal and external flow configurations based on the numerical integration procedure of the Schwarz-Christoffel transformation has been developed by using Mathematica, which is a general purpose symbolic-numerical-graphical mathematics software. This method is highly accurate (fifth order...

متن کامل

Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

This paper presents a numerical entropy production (NEP) scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volumemethod. Numerical simulations show thatNEP is successful to be a refinement/coarsening indicator in the adaptive...

متن کامل

Two-Dimensional Boundary-Conforming Orthogonal Grids for External and Internal Flows Using Schwarz-Christoffel Transformation

In this paper, a Schwarz-Christoffel method for generating two-dimensional grids for a variety of complex internal and external flow configurations based on the numerical integration procedure of the Schwarz-Christoffel transformation has been developed by using Mathematica, which is a general purpose symbolic-numerical-graphical mathematics software. This method is highly accurate (fifth order...

متن کامل

Third-order Limiting for Hyperbolic Conservation Laws applied to Adaptive Mesh Refinement and Non-Uniform 2D Grids

In this paper we extend the recently developed third-order limiter function H 3L [J. Sci. Comput., (2016), 68(2), pp. 624–652] to make it applicable for more elaborate test cases in the context of finite volume schemes. This work covers the generalization to non-uniform grids in one and two space dimensions, as well as two-dimensional Cartesian grids with adaptive mesh refinement (AMR). The ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002