Orbital Dynamics of an Oscillating Sail in the Earth - Moon System
نویسنده
چکیده
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it. The oscillating sail is a novel solar sail configuration where a triangular sail is released at a deflected angle with respect to the Sun-direction. As a result, the sail will conduct an undamped oscillating motion around the Sun-line due to the offset between the centre-of-pressure and centre-of-mass. In this paper, the resulting oscillatory motion of the acceleration vector is exploited to design new families of periodic orbits in the Earth-Moon circular restricted three-body system. In particular, the effect of adding an oscillating sail to the family of Lyapunov orbits at the L1-and L2-points as well as the family of distant retrograde orbits (DROs) is investigated. Because the solar sail Earth-Moon system is non-autonomous (due to the apparent orbital motion of the Sun), the sail's oscillating period, the orbital period and the period of the Sun around the Earth-Moon system all need to be commensurable in order for the orbits to be repeatable over time. Using a differential correction technique, orbits that satisfy these constraints can be obtained and the results comprise new families of periodic orbits that are parameterised by the required sail performance. In addition to exploiting the oscillating sail for generating new orbit families, this paper also investigates its potential for orbital transfers. By combining a systematic search method with a local optimiser, oscillating sail parameters and orbital parameters can be obtained that enable transfers between classical Lyapunov orbits at the L1-point, connections between classical Lyapunov orbits at different Lagrange points as well as transfers between orbits within the family of classical DROs.
منابع مشابه
Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of ...
متن کاملInvestigating the Design Space for Solar Sail Trajectories in the Earth- Moon System
Solar sailing is an enabling technology for many mission applications. One potential application is the use of a sail as a communications relay for a base at the lunar south pole. A survey of the design space for a solar sail spacecraft that orbits in view of the lunar south pole at all times demonstrates that trajectory options are available for sails with characteristic acceleration values of...
متن کاملEffects Analysis of Frozen Conditions for Spacecraft Relative Motion Dynamics
The purpose of this rersearch is to analyze the effective application of particular earth orbits in dynamical modeling of relative motion problem between two spacecraft. One challenge in implementing these motions is maintaining the relations as it experiences orbital perturbations (zonal harmonics J2 and J3), most notably due to the Earth’s oblateness. Certain aspects of the orbital geometry c...
متن کاملMultiple NEA Rendezvous Mission: Solar Sailing Options
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it. The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase dras...
متن کاملComparison Final Velocity for Land Yacht with a Rigid Wing and Cloth Sail
The powering requirement of a land yacht is one of the most important aspects of its design. In this respect the wind tunnel testing is an effective design tool. In fact, changing the parameters of the vehicle and testing the changes in the wind tunnel will give us a better understanding of the most efficient vehicle, and yet it is time consuming, expensive, and has inherent scaling errors. Ano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016