High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality
نویسندگان
چکیده
We provide a general theory of the expectation-maximization (EM) algorithm for inferring high dimensional latent variable models. In particular, we make two contributions: (i) For parameter estimation, we propose a novel high dimensional EM algorithm which naturally incorporates sparsity structure into parameter estimation. With an appropriate initialization, this algorithm converges at a geometric rate and attains an estimator with the (near-)optimal statistical rate of convergence. (ii) Based on the obtained estimator, we propose new inferential procedures for testing hypotheses and constructing confidence intervals for low dimensional components of high dimensional parameters. For a broad family of statistical models, our framework establishes the first computationally feasible approach for optimal estimation and asymptotic inference in high dimensions. Our theory is supported by thorough numerical results.
منابع مشابه
High Dimensional Expectation-Maximization Algorithm: Statistical Optimization and Asymptotic Normality
We provide a general theory of the expectation-maximization (EM) algorithm for inferring high dimensional latent variable models. In particular, we make two contributions: (i) For parameter estimation, we propose a novel high dimensional EM algorithm which naturally incorporates sparsity structure into parameter estimation. With an appropriate initialization, this algorithm converges at a geome...
متن کاملNonparametric Mixture of Regression Models.
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is ...
متن کاملRegularized EM Algorithms: A Unified Framework and Statistical Guarantees
Latent models are a fundamental modeling tool in machine learning applications, but they present significant computational and analytical challenges. The popular EM algorithm and its variants, is a much used algorithmic tool; yet our rigorous understanding of its performance is highly incomplete. Recently, work in [1] has demonstrated that for an important class of problems, EM exhibits linear ...
متن کاملMixture of Regression Models with Varying Mixing Proportions: A Semiparametric Approach
In this paper, we study a class of semiparametric mixtures of regression models, in which the regression functions are linear functions of the predictors, but the mixing proportions are smoothing functions of a covariate. We propose a one-step backfitting estimation procedure to achieve the optimal convergence rates for both regression parameters and the nonparametric functions of mixing propor...
متن کاملAsymptotic Behavior of Statistical Estimators and of Optimal Solutions of Stochastic Optimization Problems
We study the asymptotic behavior of the statistical estimators that maximize a not necessarily differentiable criterion function, possibly subject to side constraints (equalities and inequalities). The consistency results generalize those of Wald and Huber. Conditions are also given under which one is still able to obtain asymptotic normality. The analysis brings to the fore the relationship be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in neural information processing systems
دوره 28 شماره
صفحات -
تاریخ انتشار 2015