Adaptive multiple subtraction using regularized nonstationary regression a
نویسنده
چکیده
Stationary regression is the backbone of different seismic data processing algorithms including match filtering, which is commonly applied for adaptive multiple subtraction. However, the assumption of stationarity is not always adequate for describing seismic signals. I present a general method of nonstationary regression and show its application to nonstationary match filtering. The key idea is the use of shaping regularization for constraining the variability of nonstationary regression coefficients. As shown by simple computational experiments, shaping regularization has clear advantages over conventional Tikhonov’s regularization, incuding a more intuitive selection of parameters and a faster iterative convergence. Using benchmark synthetic data examples, I demonstrate successful applications of this method to the problem of adaptive subtraction of multiple reflections.
منابع مشابه
A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction
In this paper, constructive approximation theorems are given which show that under certain conditions, the standard Nadaraya-Watson regression estimate (NWRE) can be considered a specially regularized form of radial basis function networks (RBFN’s). From this and another related result, we deduce that regularized RBFN’s are m.s. consistent, like the NWRE for the one-step-ahead prediction of Mar...
متن کاملCorrigendum to: “Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique†published in J Biomed Phys Eng 2014; 4(1):31-38
متن کامل
Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملDetecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013