On the influence of fault bends on the growth of sub-Rayleigh and intersonic dynamic shear ruptures
نویسندگان
چکیده
[1] Earthquake ruptures are modeled as dynamically propagating shear cracks with the aim of gaining insight into the physical mechanisms governing their arrest or, otherwise, the often-observed variations in rupture speeds. Fault bends have been proposed as being the main cause for these variations. Following this line of reasoning, the existence of deviations from fault planarity is chosen as the main focus of this study. Asymmetric impact is used to generate shear loading and to propagate dynamic mode-II cracks along the bonded interfaces of two otherwise identical homogeneous constituents. Secondary paths inclined at various angles are also introduced to represent fault bends or kinks. The experiments show that certain fault bend inclinations are favored as alternate paths for rupture continuation, whereas others suppress further motion of the incoming rupture. The asymptotic elastodynamic stress fields at the tip of the growing rupture are used to develop two criteria (one energetic and one stress based) for rupture propagation or arrest at the kinked interfaces. These criteria correlate very well with the experimental results. Since most field evidence suggests that the average rupture speeds during crustal earthquakes are sub-Rayleigh, this work first focuses on incoming rupture speeds that are just below the Rayleigh wave speed. Reports of intersonic crustal fault rupture speeds having surfaced recently, experiments and analyses are also performed within that speed regime.
منابع مشابه
Dynamic path selection along branched faults: Experiments involving sub-Rayleigh and supershear ruptures
[1] Building upon previous laboratory earthquake experiments of dynamic shear rupture growth taking place along faults with simple kinks, new and complex fault geometries involving cohesively held fault branches are studied. Asymmetric impact at the specimen boundaries controls the incoming shear ruptures, which are manipulated to propagate at either sub-Rayleigh or supershear velocities. High-...
متن کاملConditions governing the occurrence of supershear ruptures under slip-weakening friction
[1] A general theory for transitions between sub-Rayleigh and intersonic rupture speeds is developed for faults governed by slip-weakening friction. The transition occurs when stresses moving at intersonic speeds ahead of expanding or accelerating sub-Rayleigh ruptures exceed the peak strength of the fault, initiating slip within a daughter crack. Upon reaching a critical nucleation length, the...
متن کاملTransition of mode II cracks from sub-Rayleigh to intersonic speeds in the presence of favorable heterogeneity
Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in fracture mechanics with important practical implications for earthquake dynamics and seismic radiation. In the Burridge–Andrews mechanism, an intersonic daughter crack nucleates, for sufficiently high prestress, at the shear stress peak traveling with the shear wave speed in front of the main crack...
متن کاملAttenuation of radiated ground motion and stresses from three-dimensional supershear ruptures
[1] Radiating shear and Rayleigh waves from supershear ruptures form Mach waves that transmit large-amplitude ground motion and stresses to locations far from the fault. We simulate bilateral ruptures on a finite-width vertical strike-slip fault (of width W and half-length L with L W) breaking the surface of an elastic half-space, and focus on the wavefield out to distances comparable to L. At ...
متن کاملIntersonic shear cracks and fault ruptures
Recent experimental observations of intersonic shear rupture events that occur in a variety of material systems have rekindled interest in the intersonic failure phenomenon. Since the early 1990s, engineers and scientists working in all length scales, from the atomistic, the structural, all the way up to the scale of the earth’s deformation processes, have undertaken joint eorts to study this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003