Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration.

نویسندگان

  • Esther Schnapp
  • Martin Kragl
  • Lee Rubin
  • Elly M Tanaka
چکیده

Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue‐specific reactions to positional discontinuities in the regenerating axolotl limb

We investigated cellular contributions to intercalary regenerates and 180° supernumerary limbs during axolotl limb regeneration using the cell autonomous GFP marker and exchanged blastemas between white and GFP animals. After distal blastemas were grafted to proximal levels tissues of the intercalary regenerate behaved independently with regard to the law of distal transformation; graft epiderm...

متن کامل

Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration

Axolotls (Ambystoma mexicanum) can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the bl...

متن کامل

Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors....

متن کامل

CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockou...

متن کامل

CD59 mediates cartilage patterning during spontaneous tail regeneration

The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 132 14  شماره 

صفحات  -

تاریخ انتشار 2005