A single amino acid change in Escherichia coli glycerol kinase abolishes glucose control of glycerol utilization in vivo.
نویسندگان
چکیده
Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) is a key element in glucose control of glycerol metabolism. Its catalytic activity is inhibited allosterically by the glycolytic intermediate, fructose 1,6-biphosphate, and by the phosphotransferase system phosphocarrier protein, IIIGlc (also known as IIAGlc). These inhibitors provide mechanisms by which glucose blocks glycerol utilization in vivo. We report here the cloning and sequencing of the glpK22 gene isolated from E. C. C. Lin strain 43, a strain that shows the loss of glucose control of glycerol utilization. DNA sequencing shows a single missense mutation that translates to the amino acid change Gly-304 to Ser (G-304-S) in glycerol kinase. The effects of this substitution on the functional and physical properties of the purified mutant enzyme were determined. Neither of the allosteric ligands inhibits it under conditions that produce strong inhibition of the wild-type enzyme, which is sufficient to explain the phenotype of strain 43. However, IIIGlc activates the mutant enzyme, which could not be predicted from the phenotype. In the wild-type enzyme, G-304 is located 1.3 nm from the active site and 2.5 nm from the IIIGlc binding site (M. Feese, D. W. Pettigrew, N. D. Meadow, S. Roseman, and S. J. Remington, Proc. Natl. Acad. Sci. USA 91:3544-3548, 1994). It is located in the same region as amino acid substitutions in the related protein DnaK which alter its catalytic and regulatory properties and which are postulated to interfere with a domain closure motion (A. S. Kamath-Loeb, C. Z. Lu, W.-C. Suh, M. A. Lonetto, and C. A. Gross, J. Biol. Chem. 270:30051-30059, 1995). The global effect of the G-304-S substitution on the conformation and catalytic and regulatory properties of glycerol kinase is consistent with a role for the domain closure motion in the molecular mechanism for glucose control of glycerol utilization.
منابع مشابه
Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo.
Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIA(Glc) (formerly known as III(glc)), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose control of both glycerol utilization a...
متن کاملEngineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for gro...
متن کاملThe effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli.
The levels of glycolytic intermediates, selected amino acids, and citric acid cycle intermediates have been measured in Escherichia coti in logarithmic growth on a variety of carbon and nitrogen sources, and also after rapid addition of nitrients to cultures. The results have been used to assess the regulatory role of various metabolites in E. coli. Gluconeogenesis is associated with high phosp...
متن کاملImportance of facilitated diffusion for effective utilization of glycerol by Escherichia coli.
Wild-type Escherichia coli possesses an inducible permeation system which catalyzes facilitated diffusion of glycerol into the cell. A spectrophotometric method can be used to assess the presence of this mechanism. The structural gene for the facilitator (glpF) and the structural gene for glycerol kinase (glpK) apparently belong to a single operon. The glpF(+) allele permits effective glycerol ...
متن کاملInhibitory effect of Li+ on cell growth and pyruvate kinase activity of Escherichia coli.
Li+ inhibited growth of Escherichia coli when glucose, galactose, fructose, or glycerol was added as the sole source of carbon. Growth inhibition was not observed when lactate or a mixture of amino acids was used as the carbon source. A mutant possessing elevated activity of Li+ extrusion was not inhibited by Li+. These results suggested that intracellular Li+ inhibited the glycolytic pathway, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 178 10 شماره
صفحات -
تاریخ انتشار 1996