Salmonella pathogenicity island 2-dependent expression of suppressor of cytokine signaling 3 in macrophages.

نویسندگان

  • Kei-Ichi Uchiya
  • Toshiaki Nikai
چکیده

Salmonella pathogenicity island 2 (SPI-2), which is located at centisome 30.7 on the chromosome of Salmonella enterica serovar Typhimurium, is required for growth within macrophages and systemic infection in mice. We recently reported that the infection of macrophages with Salmonella induces the expression of cyclooxygenase-2 in a manner dependent on SPI-2. In the present study, gene expression analysis using a cDNA array further showed the involvement of SPI-2 in the expression of suppressor of cytokine signaling 3 (SOCS-3), which is involved in the inhibition of cytokine signaling via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. A high level of SOCS-3 expression was induced in J774 macrophages infected with wild-type Salmonella compared to that in macrophages infected with a strain carrying a mutation in the spiC gene within SPI-2. Other members of the SOCS family were not detected in Salmonella-infected macrophages. The SPI-2-induced up-regulation of SOCS-3 expression was dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Furthermore, the inhibition of gamma-interferon-induced STAT-1 and interleukin-6-induced STAT-3 tyrosine phosphorylation correlated with the expression of SOCS-3. Taken together, these results indicate that Salmonella causes SPI-2-dependent activation of ERK1/2, leading to SOCS-3 expression, which in turn inhibits cytokine signaling via the JAK/STAT pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salmonella virulence factor SpiC is involved in expression of flagellin protein and mediates activation of the signal transduction pathways in macrophages.

SpiC is a virulence factor encoded within Salmonella pathogenicity island 2 (SPI-2). We have previously reported that infection of macrophages with Salmonella enterica serovar Typhimurium results in the SPI-2-dependent activation of the mitogen-activated protein kinase (MAPK) signalling pathways, leading to the expression of suppressor of cytokine signalling (SOCS)-3, which is involved in the i...

متن کامل

Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages: role of protein kinase A signal pathway.

Salmonellae are facultative intracellular bacteria capable of surviving within macrophages. Salmonella pathogenicity island 2 (SPI-2) is required for growth within macrophages and for virulence in mice. In this study, we show the involvement of SPI-2 in a signal transduction pathway that induces cytokine expression in Salmonella-infected macrophages. High levels of interleukin-10 (IL-10) mRNA w...

متن کامل

Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was dete...

متن کامل

The iron-sensing fur regulator controls expression timing and levels of salmonella pathogenicity island 2 genes in the course of environmental acidification.

In order to survive inside macrophages, Salmonella produces a series of proteins encoded by genes within Salmonella pathogenicity island 2 (SPI-2). In the present study, we report that Fur, a central regulator of iron utilization, negatively controls the expression of SPI-2 genes. Time course analysis of SPI-2 expression after the entry of Salmonella into macrophages revealed that SPI-2 genes a...

متن کامل

QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo.

The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 73 9  شماره 

صفحات  -

تاریخ انتشار 2005