Learning the Preferences of News Readers with SVM and Lasso Ranking

نویسندگان

  • Elena Hensinger
  • Ilias N. Flaounas
  • Nello Cristianini
چکیده

We attack the task of predicting which news-stories are more appealing to a given audience by comparing ‘most popular stories’, gathered from various online news outlets, over a period of seven months, with stories that did not become popular despite appearing on the same page at the same time. We cast this as a learning-to-rank task, and train two different learning algorithms to reproduce the preferences of the readers, within each of the outlets. The first method is based on Support Vector Machines, the second on the Lasso. By just using words as features, SVM ranking can reach significant accuracy in correctly predicting the preference of readers for a given pair of articles. Furthermore, by exploiting the sparsity of the solutions found by the Lasso, we can also generate lists of keywords that are expected to trigger the attention of the outlets’ readers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods

Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...

متن کامل

مطالعۀ الگوهای جمعیت‌شناختی و رفتاری خوانندگان برای اشاعۀ گزینشی اخبار

Purpose: The current research focuses on selective dissemination of news and aims at finding patterns for recognition of readers’ favorite news through web mining technique. Method: Data for this research was collected from the Yahoo News Website. The source of news was Associated Press. 840 news dated between 2011/3/1 and 2011/5/10 was analyzed through subject clustering technique. Findings:...

متن کامل

Ranking Effective Bases on Performance of Human Resource Planning Systems (Correlation and Fuzzy Approach)

EnThe present research studied the relationship between organizational learning elements and human resources performance. Population of the research consisted of all managers Tehran Telecommunication Company. Data were collected through questionnaires which included 24 questions with seven items. To determine the impact and ranking theprinciples of organizational learning in performance of huma...

متن کامل

Creating a better above-the-fold experience: Predicting news article preferences

News-article preferences provide a ripe area for learning. Readers have differing, and sometimes complicated, preferences. While it is reasonable to assume that a reader’s indicated past history is correlated with future preferences, preferences are likely somewhat variable depending on, e.g., the time of day. Editorial responsibilities aside, a good algorithm would save users time by directing...

متن کامل

Contrasting Opposing Views of News Articles on Contentious Issues

We present disputant relation-based method for classifying news articles on contentious issues. We observe that the disputants of a contention are an important feature for understanding the discourse. It performs unsupervised classification on news articles based on disputant relations, and helps readers intuitively view the articles through the opponent-based frame. The readers can attain bala...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010