Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family.
نویسندگان
چکیده
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
منابع مشابه
Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms (AhR1 and AhR2) from avian species.
Dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induce various toxic effects through the aryl hydrocarbon receptor (AhR) signaling pathway. Here, we investigated the structural and functional characteristics and molecular evolution of multiple AhRs in black-footed albatross (Phoebastria nigripes) and common cormorant (Phalacrocorax carbo). We report the complementary DNA sequences ...
متن کاملInteraction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains import...
متن کاملMolecular Basis for Differential Dioxin Sensitivity in Birds: Characterization of Avian AHR Isoforms
Our previous study demonstrated that avian species possesses two distinct aryl hydrocarbon receptors (AHR1 and AHR2). To elucidate the functional characterization of avian AHRs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) binding affinities and in vitro DRC-induced transcriptional activities of AHR isoforms from chicken (Gallus gallus), black-footed albatross (Phoebastria nigripes), common cormo...
متن کاملPredicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain.
Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently ...
متن کاملMechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River.
The mechanistic basis of resistance of vertebrate populations to contaminants, including Atlantic tomcod from the Hudson River (HR) to polychlorinated biphenyls (PCBs), is unknown. HR tomcod exhibited variants in the aryl hydrocarbon receptor 2 (AHR2) that were nearly absent elsewhere. In ligand-binding assays, AHR2-1 protein (common in the HR) was impaired as compared to widespread AHR2-2 in b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 25 شماره
صفحات -
تاریخ انتشار 1997