Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass

نویسندگان

  • Fangze Chen
  • Tao Wei
  • Xufeng Jing
  • Ying Tian
  • Junjie Zhang
  • Shiqing Xu
چکیده

Er(3+) doped oxyfluoride tellurite glasses have been prepared. Three Judd-Ofelt parameters Ωt (t=2, 4, 6) and radiative properties are calculated for prepared glasses. Emission characteristics are analyzed and it is found that prepared glasses possess larger calculated predicted spontaneous transition probability (39.97 s(-1)), emission cross section σem (10.18 × 10(-21)cm(2)) and σem × Δλeff (945.32 × 10(-28)cm(3)), corresponding to the 2.7 μm emission of Er(3+): (4)I11/2→ (4)I13/2 transition. The results suggest that the prepared glasses might be appropriate optical material for mid-infrared laser application. Moreover, rate equation analysis which is rarely used in bulk glass has been carried out to explain the relationship between emission intensity and Er(3+) concentration. The calculation results show that with the increment of Er(3+) concentration, the energy transfer up-conversion rate of (4)I13/2 state increases while the rate of (4)I11/2 state reduces, resulting in the change of 2.7 μm emission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Transformation and Intense 2.7 μm Emission from Er3+ Doped YF3/YOF Submicron-crystals

Yttrium fluoride YF3:Er(3+) and yttrium oxyfluoride YOF:Er(3+) submicron-crystals with mid-infrared fluorescent emissions were synthesized for the first time. The rhombohedral phase YOF submicron-crystals were synthesized by the crystalline phase transformation from pure orthorhombic YF3 submicron-crystals, which were prepared by co-precipitation method. The composition and morphology were char...

متن کامل

Role of Yb3+ ions on enhanced ~2.9 μm emission from Ho3+ ions in low phonon oxide glass system

The foremost limitation of an oxide based crystal or glass host to demonstrate mid- infrared emissions is its high phonon energy. It is very difficult to obtain radiative mid-infrared emissions from these hosts which normally relax non-radiatively between closely spaced energy levels of dopant rare earth ions. In this study, an intense mid-infrared emission around 2.9 μm has been perceived from...

متن کامل

Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra w...

متن کامل

Highly efficient mid-infrared 2 μm emission in Ho/Yb-codoped germanate glass

This work reports the mid-infrared emission properties around 2 μm in Ho/Yb codoped germanate glasses. The glass not only possesses good chemical durability and good thermal stability but also has high midinfrared transmittance around 2 μm (90%). In addition, the glass possesses considerably low OH content (20.45 ppm) and large spontaneous transition probability (103.38 s) corresponding to the ...

متن کامل

Luminescence Properties of Oxyfluoride Glass and Glass Ceramic Doped with Y3 + Ions

 Oxyfluoride glass ceramics containing CaF2nano-crystals doped with Y3+ ions were prepared by one-step crystallization of SiO2- Al2O3- CaO- CaF2 glasses at different temperatures. X- ray diffraction (XRD) results have revealed that CaF2 was the only precipitated crystalline phase in glass ceramic samples. According to the XRD results, a glass ceramic was selected as the best sample in order to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015