Role of spike protein endodomains in regulating coronavirus entry.
نویسندگان
چکیده
Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.
منابع مشابه
The evil role of spike in the coronaviruses: structure, function and evolution
1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...
متن کاملGxxxG motif of severe acute respiratory syndrome coronavirus spike glycoprotein transmembrane domain is not involved in trimerization and is not important for entry.
Recently, a paper was published in which it was proposed that the GxxxG motif of the severe acute respiratory syndrome (SARS) coronavirus spike (S) protein transmembrane domain plays a vital role in oligomerization of the protein (E. Arbely, Z. Granot, I. Kass, J. Orly, and I. T. Arkin, Biochemistry 45:11349-11356, 2006). Here, we show that the GxxxG motif is not involved in SARS S oligomerizat...
متن کاملReady, Set, Fuse! The Coronavirus Spike Protein and Acquisition of Fusion Competence
Coronavirus-cell entry programs involve virus-cell membrane fusions mediated by viral spike (S) proteins. Coronavirus S proteins acquire membrane fusion competence by receptor interactions, proteolysis, and acidification in endosomes. This review describes our current understanding of the S proteins, their interactions with and their responses to these entry triggers. We focus on receptors and ...
متن کاملRole of the Spike Glycoprotein of Human Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Virus Entry and Syncytia Formation
Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into...
متن کاملStructure, Function, and Evolution of Coronavirus Spike Proteins.
The coronavirus spike protein is a multifunctional molecular machine that mediates coronavirus entry into host cells. It first binds to a receptor on the host cell surface through its S1 subunit and then fuses viral and host membranes through its S2 subunit. Two domains in S1 from different coronaviruses recognize a variety of host receptors, leading to viral attachment. The spike protein exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 47 شماره
صفحات -
تاریخ انتشار 2009