CONTINUOUS INTERIOR PENALTY hp-FINITE ELEMENT METHODS FOR TRANSPORT OPERATORS

نویسنده

  • ERIK BURMAN
چکیده

A continuous interior penalty hp-finite element method that penalizes the jump of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for first-order and advection-dominated transport operators. The analysis relies on three technical results that are of independent interest: an hp-inverse trace inequality, a local discontinuous to continuous hp-interpolation result, and hp-error estimates for continuous L2-orthogonal projections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations

A continuous interior penalty hp-finite element method that penalizes the jump of the gradient of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for advection and advection-diffusion equations. The analysis relies on three technical results that are of independent interest: an hp-inverse trace inequality, a local discontinuous to continuous hp-interpola...

متن کامل

hp–VERSION INTERIOR PENALTY DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS ON ANISOTROPIC MESHES

We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for linear second-order elliptic reactiondiffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the hpDGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. ...

متن کامل

Implementation of $hp$-adaptive discontinuous finite element methods in Dune-Fem

In this paper we describe generic algorithms and data structures for the implementation of hp-adaptive discontinuous finite element methods in the Dune-Fem library. Special attention is given to the often tedious and error-prone task of transferring user data during adaptation. Simultaneously, we generalize the approach to the restriction and prolongation of data currently implemented in Dune-F...

متن کامل

Optimal Error Estimates for the hp–Version Interior Penalty Discontinuous Galerkin Finite Element Method

We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for second-order linear reaction-diffusion equations. To the best of our knowledge, the sharpest known error bounds for the hp-DGFEM are due to Riviére, Wheeler and Girault [8] and due to Houston, Schwab and Süli [5] which are optimal with respect to the meshsize h but suboptimal with respect to ...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005