Model Predictive Control for Stochastic Max-Min-Plus-Scaling Systems à ̄¿Â1⁄2 an Approximation Approach

نویسندگان

  • Samira S. Farahani
  • Ton van den Boom
  • Bart De Schutter
چکیده

A large class of discrete-event and hybrid systems can be described by a max-min-plus-scaling (MMPS) model, i.e., a model in which the main operations are maximization, minimization, addition, and scalar multiplication. Further, Model Predictive Control (MPC), which is one of the most widely used advanced control design methods in the process industry due to its ability to handle constraints on both inputs and outputs, has already been extended to both deterministic and stochastic MMPS systems. However, in order to compute an MPC controller for a general MMPS system, a nonlinear, nonconvex optimization problem has to be solved. In addition, for stochastic MMPS systems, the problem is computationally highly complex since the cost function is defined as the expected value of an MMPS function and its evaluation leads to a complex numerical integration. The aim of this paper is to decrease this computational complexity by applying an approximation method that is based on the raw moments of a random variable, to a stochastic MMPS system with a Gaussian noise. In this way, the problem can be transformed into a sequence of convex optimization problems, providing that linear or convex MPC input constraints are considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model predictive control for max-min-plus-scaling systems – Efficient implementation

In previous work we have introduced model predictive control (MPC) for max-plus-linear and max-min-plus(scaling) discrete-event systems. For max-plus-linear systems there are efficient algorithms to solve the corresponding MPC optimization problems. However, previously, for max-min-plus(-scaling) systems the only approach was to consider a limited subclass of decoupled max-min-plus systems or t...

متن کامل

Scaling, Modeling and Traffic Control of a Real Railway Network using Max-plus Algebra and Model Predictive Control

Delay time recovery can increase the efficiency of the railway network and increase the attractiveness of railway transport against other transportation systems. This article presents a new dynamical model of railway system. The proposed model is a discrete event systems that is defined based on the deviation of travel time and deviation of stop time of trains. Due to the existence of multiple ...

متن کامل

Model predictive control for uncertain max-min-plus-scaling systems

In this paper we extend the classical min-max model predictive control framework to a class of uncertain discrete event systems that can be modeled using the operations maximization, minimization, addition and scalar multiplication, and that we call max-min-plus-scaling (MMPS) systems. Provided that the stage cost is an MMPS expression and considering only linear input constraints then the open...

متن کامل

On model predictive control for max-min-plus-scaling discrete event systems

We extend the model predictive control framework, which is very popular in the process industry due to its ability to handle constraints on inputs and outputs, to a class of discrete event systems that can be modeled using the operations maximization, minimization, addition and scalar multiplication, and that we call max-min-plus-scaling systems. We show that this class encompasses several othe...

متن کامل

Modeling and control of switching max-plus-linear systems with random and deterministic switching

Switching max-plus-linear (SMPL) systems are discrete-event systems that can switch between different modes of operation. In each mode the system is described by a max-plus-linear state equation and a max-plus-linear output equation, with different system matrices for each mode. The switching may depend on the inputs and the states, or it may be a stochastic process. In this paper two equivalen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011