The Block Structure of Three Dixon Resultants and Their Accompanying Transformation Matrices

نویسندگان

  • Eng-Wee Chionh
  • Ming Zhang
  • Ronald N. Goldman
چکیده

Dixon 1908] introduces three distinct determinant formulations for the resultant of three bivariate polynomials of bidegree (m; n). The rst technique applies Sylvester's dialytic method to construct the resultant as the determinant of a matrix of order 6mn. The second approach uses Cayley's determinant device to form a more compact representation for the resultant as the determinant of a matrix of order 2mn. The third method employs a combination of Cayley's determinant device with Sylvester's dialytic method to build the resultant as the determinant of a matrix of order 3mn. Here relations between these three resultant formulations are derived and the structure of the transformations between these resultant matrices is investigated. In particular, it is shown that these transformation matrices all have similar, simple, upper triangular, block symmetric structures and the blocks themselves have elegant symmetry properties. Elementary entry formulas for the transformation matrices are also provided. In light of these results, the three Dixon resultant matrices are reexamined and shown to have natural block structures compatible with the block structures of the transformation matrices. These block structures are analyzed here and applied along with the block structures of the transformation matrices to simplify the calculation of the entries of the Dixon resultants of order 2mn and 3mn and to make these calculations more eecient by removing redundant computations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Dixon Resultants

Dixon 1908] describes three distinct homogeneous determinant representations for the resultant of three bivariate polynomials of bidegree (m; n). These Dixon resultants are the determinants of matrices of orders 6mn, 3mn and 2mn, and the entries of these matrices are respectively homogeneous of degrees 1, 2, and 3 in the coeecients of the original three polynomial equations. Here we mix and mat...

متن کامل

Acm Symposium on Theory of Computing (stoc 96) Sparsity Considerations in Dixon Resultants

New results relating the sparsity of nonhomogeneous polynomial systems and computation of their projection operator (a non-trivial multiple of the multivariate resultant) using Dixon's method are developed. It is demonstrated that Dixon's method of computing resultants, despite being classical, implicitly exploits the sparse structure of input polynomials. It is proved that the size of the Dixo...

متن کامل

Cayley-Dixon construction of Resultants of Multi-Univariate Composed Polynomials

The Cayley-Dixon formulation for multivariate resultants have been shown to be efficient (both experimentally and theoretically) for computing resultants by simultaneously eliminating many variables from a polynomial system. In this paper, the behavior of Cayley-Dixon resultant construction and the structure of Dixon matrices is analyzed for composed polynomial systems constructed from a multiv...

متن کامل

A Complete Analysis of Resultants and Extraneous Factors for Unmixed Bivariate Polynomial Systems using the Dixon formulation

A necessary and sufficient condition on the support of a generic unmixed bivariate polynomial system is identified such that for polynomial systems with such support, the Dixon resultant formulation produces their resultants. It is shown that Sylvester-type matrices can also be obtained for such polynomial systems. These results are shown to be a generalization of related results recently repor...

متن کامل

Resultants for Unmixed Bivariate Polynomial Systems using the Dixon formulation

A necessary and sufficient condition on the support of a generic unmixed bivariate polynomial system is identified such that for polynomial systems with such support, the Dixon resultant formulation produces their resultants. It is shown that Sylvester-type matrices can also be obtained for such polynomial systems. These results are shown to be a generalization of related results recently repor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999