Upper and lower bounds for higher order eigenvalues of some semilinear elliptic equations

نویسنده

  • Raffaele Chiappinelli
چکیده

1. Chiappinelli, Raffaele; Furi, Massimo; Pera, Maria Patrizia Persistence of the normalized eigenvectors of a perturbed operator in the variational case Glasg. Math. J. 55 (2013), no. 3, 629–638. 2. Chiappinelli, Raffaele Variational methods for NLEV approximation near a bifurcation point Int. J. Math. Math. Sci. 2012, Art. ID 102489, 32 pp 3. Chiappinelli, Raffaele; Furi, Massimo; Pera, Maria Patrizia A new theme in nonlinear analysis: continuation and bifurcation of the unit eigenvectors of a perturbed linear operator Commun. Appl. Anal. 15 (2011), no. 2-4, 299–312. 4. Chiappinelli, Raffaele Upper and lower bounds for higher order eigenvalues of some semilinear elliptic equations Appl. Math. Comput. 216 (2010), no. 12, 3772–3777. 5. Chiappinelli, Raffaele A-priori bounds and asymptotics on the eigenvalues in bifurcation problems for perturbed selfadjoint operators

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Maximum Principle Result for a General Fourth Order Semilinear Elliptic Equation

We obtain maximum principles for solutions of some general fourth order elliptic equations by modifying an auxiliary function introduced by L.E. Payne. We give a brief application of these maximum principles by deducing apriori bounds on a certain quantity of interest.

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations

Uniform lower and upper bounds for positive finite-element approximations to semilinear elliptic equations in several space dimensions subject to mixed Dirichlet-Neumann boundary conditions are derived. The main feature is that the non-linearity may be non-monotone and unbounded. The discrete minimum principle provides a positivity-preserving approximation if the discretization parameter is sma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2010