An Enhanced Set-Membership PNLMS Algorithm with a Correntropy Induced Metric Constraint for Acoustic Channel Estimation

نویسندگان

  • Zhan Jin
  • Yingsong Li
  • Yanyan Wang
چکیده

In this paper, a sparse set-membership proportionate normalized least mean square (SM-PNLMS) algorithm integrated with a correntropy induced metric (CIM) penalty is proposed for acoustic channel estimation and echo cancellation. The CIM is used for constructing a new cost function within the kernel framework. The proposed CIM penalized SM-PNLMS (CIMSM-PNLMS) algorithm is derived and analyzed in detail. A desired zero attraction term is put forward in the updating equation of the proposed CIMSM-PNLMS algorithm to force the inactive coefficients to zero. The performance of the proposed CIMSM-PNLMS algorithm is investigated for estimating an underwater communication channel estimation and an echo channel. The obtained results demonstrate that the proposed CIMSM-PNLMS algorithm converges faster and provides a smaller estimation error in comparison with the NLMS, PNLMS, IPNLMS, SM-PNLMS and zero-attracting SM-PNLMS (ZASM-PNLMS) algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation

A robust sparse least-mean mixture-norm (LMMN) algorithm is proposed, and its performance is appraised in the context of estimating a broadband multi-path wireless channel. The proposed algorithm is implemented via integrating a correntropy-induced metric (CIM) penalty into the conventional LMMN algorithm to modify the basic cost function, which is denoted as the CIM-based LMMN (CIM-LMMN) algor...

متن کامل

Channel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain

Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...

متن کامل

Channel Effect Compensation in OFDM System under Short CP Length Using Adaptive Filter in Wavelet Transform Domain

Channel estimation in communication systems is one of the most important issues that can reduce the error rate of sending and receiving information as much as possible. In this regard, estimation of OFDM-based wireless channels using known sub-carriers as pilot is of particular importance in frequency domain. In this paper, channel estimation under short cyclic prefix (CP) in OFDM system is con...

متن کامل

Sparsity-Aware Recursive Maximum Correntropy Criteria Adaptive Filtering Algorithm

To address sparse channel estimation problem in nonGaussian impulsive noise environment, a recursive maximum correntropy criteria (RMCC) algorithm using sparse constraint is proposed to combat impulsive-inducing instability. Specifically, the recursive algorithm on the correntrioy with a forgetting factor of error at iteration is to solve steady-state error for improving the maximum correntropy...

متن کامل

Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments

Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017