Metachronal waves in a chain of rowers with hydrodynamic interactions.
نویسندگان
چکیده
Hair-like appendages called cilia on the surface of a microorganism such as Paramecium or Opalina beat highly synchronized and form so-called metachronal waves that travel along the surfaces. In order to study under what principal conditions these waves form, we introduce a chain of beads, called rowers, each periodically driven by an external force on a straight line segment. To implement hydrodynamic interactions between the beads, they are considered point-like. Two beads synchronize in antiphase or in phase depending on the positive or negative curvature of their driving-force potential. Concentrating on in-phase synchronizing rowers, we find that they display only transient synchronization in a bulk fluid. On the other hand, metachronal waves with wavelengths of 7-10 rower distances emerge, when we restrict the range of hydrodynamic interactions either artificially to nearest neighbors or by the presence of a bounding surface as in any relevant biological system.
منابع مشابه
Hydrodynamic interactions of cilia on a spherical body.
Microorganisms develop coordinated beating patterns on surfaces lined with cilia known as metachronal waves. For a chain of cilia attached to a flat ciliate, it has been shown that hydrodynamic interactions alone can lead the system to synchronize. However, several microorganisms possess a curve-shaped ciliate body and so to understand the effect of this geometry on the formation of metachronal...
متن کاملCiliary metachronal wave propagation on the compliant surface of Paramecium cells.
Ciliary movements in protozoa exhibit metachronal wave-like coordination, in which a constant phase difference is maintained between adjacent cilia. It is at present generally thought that metachronal waves require hydrodynamic coupling between adjacent cilia and the extracellular fluid. To test this hypothesis, we aspirated a Paramecium cell using a micropipette which completely sealed the sur...
متن کاملMetachronal waves in the flagellar beating of Volvox and their hydrodynamic origin
Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characteri...
متن کاملEmergence of metachronal waves in cilia arrays.
Propulsion by cilia is a fascinating and universal mechanism in biological organisms to generate fluid motion on the cellular level. Cilia are hair-like organelles, which are found in many different tissues and many uni- and multicellular organisms. Assembled in large fields, cilia beat neither randomly nor completely synchronously--instead they display a striking self-organization in the form ...
متن کاملRowers coupled hydrodynamically. Modeling possible mechanisms for the cooperation of cilia
We introduce a model system of stochastic entities, called rowers which include some essentialities of the behavior of real cilia. We introduce and discuss the problem of symmetry breaking for these objects and its connection with the onset of macroscopic, directed flow in the fluid. We perform a mean field-like calculation showing that hydrodynamic interaction may provide for the symmetry brea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 34 4 شماره
صفحات -
تاریخ انتشار 2011