Hierarchical Learning for Modular Robots

نویسندگان

  • Risto Kojcev
  • Nora Etxezarreta
  • Alejandro Hernández
  • Víctor Mayoral
چکیده

We argue that hierarchical methods can become the key for modular robots achieving reconfigurability. We present a hierarchical approach for modular robots that allows a robot to simultaneously learn multiple tasks. Our evaluation results present an environment composed of two different modular robot configurations, namely 3 degrees-of-freedom (DoF) and 4DoF with two corresponding targets. During the training, we switch between configurations and targets aiming to evaluate the possibility of training a neural network that is able to select appropriate motor primitives and robot configuration to achieve the target. The trained neural network is then transferred and executed on a real robot with 3DoF and 4DoF configurations. We demonstrate how this technique generalizes to robots with different configurations and tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control

In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...

متن کامل

A Morphogenetic Approach to Self-Reconfigurable Modular Robots using a Hybrid Hierarchical Gene Regulatory Network

In this paper, we present a morphogenetic approach to selfreconfiguration of a lattice-based simulated modular robot, CrossCube, under dynamic environments. A hybrid hierarchical controller inspired by the embryonic development of multi-cellular organisms is proposed to form different patterns for modular robots to adapt to environmental changes. The first layer is a rule-based controller to ge...

متن کامل

Automated Design of Adaptive Controllers for Modular Robots using Reinforcement Learning

Designing distributed controllers for self-reconfiguring modular robots has been consistently challenging. We have developed a reinforcement learning approach which can be used both to automate controller design and to adapt robot behavior on-line. In this paper, we report on our study of reinforcement learning in the domain of self-reconfigurable modular robots: the underlying assumptions, the...

متن کامل

A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots

In this paper, we present a distributed reinforcement learning strategy for morphology-independent lifelong gait learning for modular robots. All modules run identical controllers that locally and independently optimize their action selection based on the robot’s velocity as a global, shared reward signal. We evaluate the strategy experimentally mainly on simulated, but also on physical, modula...

متن کامل

On Scalability Issues in Reinforcement Learning for Self-Reconfiguring Modular Robots

Self-reconfiguring modular robots have been receiving great attention because advances in our field are expected to deliver ultra-adaptable and robust systems. There has been remarkable progress in modular hardware and distributed controllers, e.g., [1]–[4], some of which were designed automatically by genetic algorithms, e.g., [1]. But how can the greatest adaptability be achieved? Our positio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04132  شماره 

صفحات  -

تاریخ انتشار 2018