Landmark Detection and Recognition based on Adaboost and SVM
نویسندگان
چکیده
This paper proposes a robust real-time artificial landmarks detection and recognition system for indoor mobile robot. First, histograms of oriented gradient (HOG) features are extracted to resolve the illumination changes in indoor environment. Second, AdaBoost based algorithm is used in detection phase to increase the processing speed. Finally, RBF-SVM classifier is used for recognition. Experimental results show a high detection and recognition accuracy of the proposed system.
منابع مشابه
Practical Aspects of Face Recognition
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملImproved Training Algorithms to Reduced Set Vector Machine and Adaboost Cascade Classifier for Face Detection
In this paper we present improved training algorithms to two newly developed classifiers, reduced set vector machines and Adaboost cascade classifier applied in face detection, which are all based on learning from data. Support vector machine (SVM) has been proved to be a powerful tool for solving practical pattern recognition problems based on learning from data. Due to large number of support...
متن کاملAutomatic Video Based Face Verification and Recognition by Support Vector Machines
This paper presents an automatic video based face verification and recognition system by Support Vector Machines (SVMs). Faces as training samples are automatically extracted from input video sequences in real-time by LUT-based Adaboost and are normalized both in geometry and in gray level distribution after facial landmark localization via Simple Direct Appearance Model (SDAM). Two different s...
متن کاملStudy of Prominence Detection Based on Various Phone-Specific Features
In this letter, we present useful features accounting for pronunciation prominence and propose a classification technique for prominence detection. A set of phone-specific features are extracted based on a forced alignment of the test pronunciation provided by a speech recognition system. These features are then applied to the traditional classifiers such as the support vector machine (SVM), ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013