Approximation methods for latent variable models
نویسنده
چکیده
Modern statistical models are often intractable, and approximation methods can be required to perform inference on them. Many different methods can be employed in most contexts, but not all are fully understood. The current thesis is an investigation into the use of various approximation methods for performing inference on latent variable models. Composite likelihoods are used as surrogates for the likelihood function of state space models (SSM). In chapter 3, variational approximations to their evaluation are investigated, and the interaction of biases as composite structure changes is observed. The bias effect of increasing the block size in composite likelihoods is found to balance the statistical benefit of including more data in each component. Predictions and smoothing estimates are made using approximate ExpectationMaximisation (EM) techniques. Variational EM estimators are found to produce predictions and smoothing estimates of a lesser quality than stochastic EM estimators, but at a massively reduced computational cost. Surrogate latent marginals are introduced in chapter 4 into a non-stationary SSM with i.i.d. replicates. They are cheap to compute, and break functional dependencies on parameters for previous time points, giving estimation algorithms linear computational complexity. Gaussian variational approximations are integrated with the surrogate marginals to produce an approximate EM algorithm. Using these Gaussians as proposal distributions in importance sampling is found to offer a positive trade-off in terms of the accuracy of predictions and smoothing estimates made using estimators. A cheap to compute model based hierarchical clustering algorithm is proposed 6 Abstract in chapter 5. A cluster dissimilarity measure based on method of moments estimators is used to avoid likelihood function evaluation. Computation time for hierarchical clustering sequences is further reduced with the introduction of short-lists that are linear in the number of clusters at each iteration. The resulting clustering sequences are found to have plausible characteristics in both real and synthetic datasets.
منابع مشابه
Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملUsing multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملStochastic Approximation Methods for Latent Regression Item Response Models
This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the conditional distribution of ability. Applications for estim...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملSimulation-based approach to estimation of latent variable models
We propose a simulation-based method for calculating maximum likelihood estimators in latent variable models. The proposed method integrates a recently developed sampling strategy, the so-called Sample Average Approximation method, to efficiently compute high quality solutions of the estimation problem. Theoretical and algorithmic properties of the method are discussed. A computational study, i...
متن کاملVariational Bayes on Monte Carlo Steroids
Variational approaches are often used to approximate intractable posteriors or normalization constants in hierarchical latent variable models. While often effective in practice, it is known that the approximation error can be arbitrarily large. We propose a new class of bounds on the marginal log-likelihood of directed latent variable models. Our approach relies on random projections to simplif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016