CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

نویسندگان

  • Zhexue Wu
  • Doohyun Lee
  • Jeongmin Joo
  • Jung-Hoon Shin
  • Wonku Kang
  • Sangtaek Oh
  • Do Yup Lee
  • Su-Jun Lee
  • Sung Su Yea
  • Hye Suk Lee
  • Taeho Lee
  • Kwang-Hyeon Liu
چکیده

Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of human liver cytochrome P450 enzymes involved in the metabolism of SCH 530348 (Vorapaxar), a potent oral thrombin protease-activated receptor 1 antagonist.

Vorapaxar (SCH 530348), a potent oral thrombin protease-activated receptor 1 antagonist, is being developed as an antiplatelet agent for patients with established vascular disease. The objective of this study was to identify the human liver cytochrome P450 (P450) enzyme(s) responsible for the metabolism of SCH 530348. Human liver microsomes metabolized SCH 530348 to M19, an amine metabolite for...

متن کامل

Identification of novel substrates for human cytochrome P450 2J2.

Several antihistamine drugs including terfenadine, ebastine, and astemizole have been identified as substrates for CYP2J2. The overall importance of this enzyme in drug metabolism has not been fully explored. In this study, 139 marketed therapeutic agents and compounds were screened as potential CYP2J2 substrates. Eight novel substrates were identified that vary in size and overall topology fro...

متن کامل

PharmGKB summary: cytochrome P450, family 2, subfamily J, polypeptide 2: CYP2J2.

CYP2J2 is a member of the cytochrome P450 (CYP) family of monooxygenases, and, in humans, is the sole member of the CYP2J subfamily [1]. Specifically, CYP2J2 is an epoxygenasethat catalyzes epoxideformation at thesite of a carbon–carbon double bond in the substrate, as other CYP epoxygenases do, such as CYP2C8 and CYP2C9 [2]. The therapeutic agents ebastine [3], astemizole, terfenadine, diclofe...

متن کامل

Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.

Voriconazole is a triazole antifungal agent with potent activity against a broad spectrum of clinically significant pathogens. In vivo and in vitro studies have demonstrated that voriconazole is extensively metabolized, with the major circulating metabolite resulting from N-oxidation. In the present study, we report on the human cytochrome P450 enzymes responsible for the generation of this met...

متن کامل

Characterization of ebastine, hydroxyebastine, and carebastine metabolism by human liver microsomes and expressed cytochrome P450 enzymes: major roles for CYP2J2 and CYP3A.

Ebastine undergoes extensive metabolism to form desalkylebastine and hydroxyebastine. Hydroxyebastine is subsequently metabolized to carebastine. Although CYP3A4 and CYP2J2 have been implicated in ebastine N-dealkylation and hydroxylation, the enzyme catalyzing the subsequent metabolic steps (conversion of hydroxyebastine to desalkylebastine and carebastine) have not been identified. Therefore,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 11  شماره 

صفحات  -

تاریخ انتشار 2013