A formal test for nonstationarity of spatial stochastic processes
نویسنده
چکیده
Spatial statistics is one of the major methodologies of image analysis, field trials, remote sensing, and environmental statistics. The standard methodology in spatial statistics is essentially based on the assumption of stationary and isotropic random fields. Such assumptions might not hold in large heterogeneous fields. Thus, it is important to understand when stationarity and isotropy are reasonable assumptions. Most of the work that has been done so far to test the nonstationarity of a random process is in one dimension. Unfortunately, there is not much literature of formal procedures to test for stationarity of spatial stochastic processes. In this manuscript, we consider the problem of testing a given spatial process for stationarity and isotropy. The approach is based on a spatial spectral analysis, this means spectral functions which are space dependent. The proposed method consists essentially in testing the homogeneity of a set of spatial spectra evaluated at different locations. In addition to testing stationarity and isotropy, the analysis provides also a method for testing whether the observed process fits a uniformly modulated model, and a test for randomness (white noise). Applications include modeling and testing for nonstationary of air pollution concentrations over different geo-political boundaries. © 2004 Elsevier Inc. All rights reserved.
منابع مشابه
Statistical tests for spatial nonstationarity based on the geographically weighted regression model
Geographically weighted regression (GWR) is a way of exploring spatial nonstationarity by calibrating a multiple regression model which allows different relationships to exist at different points in space. Nevertheless, formal testing procedures for spatial nonstationarity have not been developed since the inception of the model. In this paper the authors focus mainly on the development of stat...
متن کاملPower of surrogate data testing with respect to nonstationarity
Surrogate data testing is a method frequently applied to evaluate the results of nonlinear time series analysis. Since the null hypothesis tested against is a linear, Gaussian, stationary stochastic process a positive outcome may not only result from an underlying nonlinear or even chaotic system, but also from, e.g., a nonstationary linear one. We investigate the power of the test against nons...
متن کاملA KPSS test for stationarity for spatial point processes.
We propose a formal method to test stationarity for spatial point processes. The proposed test statistic is based on the integrated squared deviations of observed counts of events from their means estimated under stationarity. We show that the resulting test statistic converges in distribution to a functional of a two-dimensional Brownian motion. To conduct the test, we compare the calculated s...
متن کاملSpurious Spatial Regression, Spatial Cointegration and Heteroscedasticity
A test strategy consisting of a two-step application of a Lagrange Multiplier test was recently suggested as a device to reveal spatial nonstationarity, spurious spatial regression and spatial cointegration. The present paper generalises the test procedure by incorporating control for biased test values emerging from unobserved heteroscedasticity. Using Monte Carlo simulation, the behaviour of ...
متن کاملGranger Causality and Unit Roots
The asymptotic behavior of the Granger-causality test under stochastic nonstationarity is studied. Our results confirm that the inference drawn from the test is not reliable when the series are integrated to the first order. In the presence of deterministic components, the test statistic diverges, eventually rejecting the null hypothesis, even when the series are independent of each other. More...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005