Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor
نویسندگان
چکیده
Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.
منابع مشابه
Corrigendum to “Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge”
The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with subs...
متن کاملFast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules.
The possibility to introduce the exotic anammox sludge to seed the pilot-scale anammox granular reactor and its fast start-up for treating high nitrogen concentration wastewater were evaluated in this study. The reactor was started up successfully in two weeks; in addition, high nitrogen removal was achieved for a long period. Stoichiometry molar ratios of nitrite conversion and nitrate product...
متن کاملN2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.
This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence o...
متن کاملFast start-up anammox process using Acyl-homoserine lactones (AHLs) containing supernatant.
N-dodecanoyl homoserine lactone (C12-HSL) was detected in the supernatant of an anammox granular sludge reactor (AGSR). C12-HSL could enhance the specific anammox activity of anammox biomass. Adding C12-HSL-containing AGSR supernatant into the continuously stirred tank reactors reduced the start-up time of the anammox process from 80 to 66days. Moreover, the nitrogen loading rate was also enhan...
متن کاملThe granule size distribution in an anammox-based granular sludge reactor affects the conversion--implications for modeling.
Mathematical models are useful tools to optimize the performance of granular sludge reactors. In these models, typically a uniform granule size is assumed for the whole reactor, even though in reality the granules follow a size distribution and the granule size as such affects the process performance. This study assesses the effect of the granule size distribution on the performance of a granul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016