Variation of Physical constants, Redshift and the Arrow of time
نویسندگان
چکیده
Theories of fundamental physics as well as cosmology must ultimately not only account for the structure and evolution of the universe and the physics of fundamental interactions, but also lead to an understanding of why this particular universe follows the physics that it does. Such theories must ultimately lead to an understanding of the values of the fundamental constants themselves. However, all such efforts have failed, leaving fundamental constants outside of any physical theories. In this paper we take a different approach than the usual evolutionary picture where the physics itself is assumed invariant. We study numerical relations among fundamental constants starting from relationships first proposed by Weinberg (1972). We have shown (Kafatos et al.2000) that they turn out to be equivalent to the relations found by Dirac (1937). Then a new scaling hypothesis relating the speed of light c and the scale of the universe R is explored. The ”coincidences” of Dirac and Eddington(1931) concerning large numbers and ratios of fundamental constants do not need to be explained in our view, rather they are accepted as premises and in the process, they yield a fundamentally different view of the cosmos. We develop an axiomatic approach and the fundamental constants can be assumed to vary and this variation leads to an apparent expansion of the universe. Also the variation of constants leads to change in the parameters like permittivity and refractive index of the quantum vacuum. This gives rise to a possibility of explaining some of anomalies found in the observations of high redshift quasars. The variations of the fundamental constants lead to a changing universe,i.e., the number of nucleons varies, etc. The increase of the number of nucleons and the redshift of the spectral lines appear to be related to the emergence of an arrow of time as perceived by an observer in the present universe. Possible implications of this
منابع مشابه
Scaling in Cosmology and the Arrow of Time
A new type of scaling applicable to a variety of physical parameters in the universe is proposed here. This utilizes a relation linking the fundamental masses and fundamental constants in nature and an axiomatic approach is developed for the relations between microscopic and macroscopic found by Eddington and Dirac. In this approach, the fundamental constants are changing with time and the vari...
متن کاملSpace-Time Variation of Physical Constants and Relativistic Corrections in Atoms
Detection of high-redshift absorption in the optical spectra of quasars have provided a powerful tool to measure spatial and temporal variations of physical “constants” in the Universe. It is demonstrated that high sensitivity to the variation of the fine structure constant α can be obtained from a comparison of the spectra of heavy and light atoms (or molecules). We have performed calculations...
متن کاملElastic constants and their variation by pressure in the cubic PbTiO3 compound using IRelast computational package within the density functional theory
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} In this paper, we study the structural and electronic properties of the cubic PbTiO3 compound by using the density functional the...
متن کاملVarying constants.
We review properties of theories for the variation of gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that are consistent with time variation in the fine structure constant since a redshift of 3.5. The behaviour of a simple class of varying-alpha cosmologies is outlined in...
متن کاملACTIVATION PARAMETERS AND RELATION OF ACTIVATION ENTROPY WITH SOLVENT POLARITY IN THERMAL REARRANGEMENT OF 7,7-DICHLORO-[a,c]- DIBENZO-[4,1,0]-BICYCLOHEPTANE
Thermal rearrangement of 7,7-dichloro-[a,c]-dibenzo-[4,1,0]-bicycloheptane (1) to 5,6-dichloro-5Hdibenzo-[a,c]-cycloheptene (2) was studied in the solid phase and in solvents with different polarities. Thefirst-order constants at various temperatures for the rearrangement process were evaluated from theabsorption time data. The activation parameters for this rearrangement were obtained from the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003