On Nonlinear Dirichlet–Neumann Algorithms for Jumping Nonlinearities

نویسندگان

  • Heiko Berninger
  • Ralf Kornhuber
  • Oliver Sander
چکیده

We consider a quasilinear elliptic transmission problem where the nonlinearity changes discontinuously across two subdomains. By a reformulation of the problem via Kirchhoff transformation we first obtain linear problems on the subdomains together with nonlinear transmission conditions and then a nonlinear Steklov– Poincaré interface equation. We introduce a Dirichlet–Neumann iteration for this problem and prove convergence to a unique solution in one space dimension. Finally we present numerical results in two space dimensions suggesting that the algorithm can be applied successfully in more general cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators

The aim of this paper is to obtain nonlinear operators in suitable function spaces whose fixed points coincide with the solutions of the nonlinear boundary value problems (φ(u)) = f(t, u, u), l(u, u) = 0, where l(u, u) = 0 denotes the Dirichlet, Neumann or periodic boundary conditions on [0, T ], φ : R → R is a suitable monotone homeomorphism and f : [0, T ]× R × R → R is a Carathéodory functio...

متن کامل

ar X iv : m at h / 04 11 51 3 v 2 [ m at h . A P ] 1 4 A pr 2 00 5 NONLINEAR HYPERBOLIC EQUATIONS IN INFINITE HOMOGENEOUS WAVEGUIDES

In this paper we prove global and almost global existence theorems for nonlinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides. We can handle both the case of Dirichlet boundary conditions and Neu-mann boundary conditions. In the case of Neumann boundary conditions we need to assume a natural nonlinear Neumann condition on the quasilinear terms. The results tha...

متن کامل

ar X iv : m at h / 04 11 51 3 v 1 [ m at h . A P ] 2 3 N ov 2 00 4 NONLINEAR HYPERBOLIC EQUATIONS IN INFINITE HOMOGENEOUS WAVEGUIDES

In this paper we prove global and almost global existence theorems for nonlinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides. We can handle both the case of Dirichlet boundary conditions and Neu-mann boundary conditions. In the case of Neumann boundary conditions we need to assume a natural nonlinear Neumann condition on the quasilinear terms. The results tha...

متن کامل

Convergence behaviour of Dirichlet–Neumann and Robin methods for a nonlinear transmission problem

We investigate Dirichlet–Neumann and Robin methods for a quasilinear elliptic transmission problem in which the nonlinearity changes discontinuously across two subdomains. In one space dimension we obtain convergence theorems by extending known results from the linear case. They hold both on the continuous and on the discrete level. From the proofs one can infer mesh-independence of the converg...

متن کامل

Geometric lower bounds for the spectrum of elliptic PDEs with Dirichlet conditions in part

An extension of the lower-bound lemma of Boggio is given for the weak forms of certain elliptic operators, which have partially Dirichlet and partially Neumann boundary conditions, and are in general nonlinear. Its consequences and those of an adapted Hardy inequality for the location of the bottom of the spectrum are explored in corollaries wherein a variety of assumptions are placed on the sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005