Bipartite multigraphs with expander-like properties
نویسنده
چکیده
Graphs with the above property seem to behave well also with respect to other, more complicated, expansion-type properties. Indeed, the author was motivated to study this question by a paper communicated to him in May 2002 (the latest version of the paper is available from URL http://www-math.mit.edu/∼vempala/papers/tspinapprox.ps). In this paper, Papadimitriou and Vempala established approximation hardness of TSP with triangle inequality using as a tool in their construction the fact that for d = 6 and
منابع مشابه
Spectral Graph Theory Lecture 12 Expander Codes
Our construction of error-correcting codes will exploit bipartite expander graphs (as these give a much cleaner construction than the general case). Let’s begin by examining what a bipartite expander graph should look like. It’s vertex set will have two parts, U and V , each having n vertices. Every vertex will have degree d, and every edge will go from a vertex in U to a vertex in V . In the s...
متن کاملParallel Processing Letters Bipartite Expander Matching Is in Nc
A work-eecient deterministic NC algorithm is presented for nding a maximum matching in a bipartite expander graph with any expansion factor > 1. This improves upon a recently presented deterministic NC maximum matching algorithm which is restricted to those bipartite expanders with large expansion factors (; > 0), and is not work-eecient 1].
متن کاملDegree-bounded factorizations of bipartite multigraphs and of pseudographs
For d ≥ 1, s ≥ 0 a (d,d + s)-graph is a graph whose degrees all lie in the interval {d,d +1, . . . ,d +s}. For r ≥ 1, a≥ 0 an (r,r+1)-factor of a graph G is a spanning (r,r+a)-subgraph of G. An (r,r+a)-factorization of a graph G is a decomposition of G into edge-disjoint (r,r +a)-factors. We prove a number of results about (r,r+a)-factorizations of (d,d+s)-bipartite multigraphs and of (d,d + s)...
متن کاملOn the list chromatic index of nearly bipartite multigraphs
Galvin ([7]) proved that every k-edge-colorable bipartite multigraph is kedge-choosable. Slivnik ([11]) gave a streamlined proof of Galvin's result. A multigraph G is said to be nearly bipartite if it contains a special vertex Vs such that G Vs is a bipartite multigraph. We use the technique in Slivnik's proof to obtain a list coloring analog of Vizing's theorem ([12]) for nearly bipartite mult...
متن کاملEdge-Coloring Bipartite Multigraphs to Select Network Paths
We consider the idea of using a centralized controller to schedule network traffic within a datacenter and implement an algorithm that edge-colors bipartite multigraphs to select the paths that packets should take through the network. We implement three different data structures to represent the bipartite graphs: a matrix data structure, an adjacency list data structure, and an adjacency list d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 155 شماره
صفحات -
تاریخ انتشار 2007