Kinematic Design of Serial Link Manipulators From Task Specifications

نویسندگان

  • Christiaan J. J. Paredis
  • Pradeep K. Khosla
چکیده

One of the most important parameters to consider when designing a manipulator is the number of degrees-of-freedom (DOFs). This article focuses on the question: How many DOFs are necessary and sufficient for fault tolerance and how should these DOFs be distributed along the length of the manipulator? A manipulator is fault tolerant if it can complete its task even when one of its joints fails and is immobilized. The number of degrees-of-freedom needed for fault tolerance strongly depends on the knowledge available about the task. In this article, two approaches are explored. First, for the design of a General Purpose Fault Tolerant Manipulator, it is assumed that neither the exact task trajectory, nor the redundancy resolution algorithm are known a priori and that the manipulator has no joint limits. In this case, two redundant DOFs are necessary and sufficient to sustain one joint failure as is demonstrated in two design templates for spatial fault tolerant manipulators. In a second approach, both the Cartesian task path and the redundancy resolution algorithm are assumed to be known. The design of such a Task Specific Fault Tolerant Manipulator requires only one degree-of-redundancy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task based synthesis of serial manipulators

Computing the optimal geometric structure of manipulators is one of the most intricate problems in contemporary robot kinematics. Robotic manipulators are designed and built to perform certain predetermined tasks. There is a very close relationship between the structure of the manipulator and its kinematic performance. It is therefore important to incorporate such task requirements during the d...

متن کامل

The Kinematic design of a 3-dof Hybrid Manipulator

This paper focuses on the kinematic properties of a new three-degree-of-freedom hybrid manipulator. This manipulator is obtained by adding in series to a five-bar planar mechanism (similar to the one studied by Bajpai and Roth [1]) a third revolute passing through the line of centers of the two actuated revolute joints of the above linkage (Figures 2 & 3). The resulting architecture is hybrid i...

متن کامل

Topology and Geometry of Serial and Parallel Manipulators

The evolution of requirements for mechanical products toward higher performances, coupled with never ending demands for shorter product design cycle, has intensified the need for exploring new architectures and better design methodologies in order to search the optimal solutions in a larger design space including those with greater complexity which are usually not addressed by available design ...

متن کامل

Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach

In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...

متن کامل

A Unified Notation for Serial, Parallel and Hybrid Kinematic Structures

This paper proposes a new notation for kinematic structures which allows a unified description of serial, parallel, and hybrid robots or articulated machine tools. During the past decades, the well-known Denavit-Hartenberg parameters have been used widely to describe serial kinematics of robots in science and industry. Till now, such a common notation for parallel manipulators has not yet been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1993