Computing shortest lattice vectors on special hardware

نویسنده

  • Michael Schneider
چکیده

The shortest vector problem (SVP) in lattices is related to problems in combinatorial optimization, algorithmic number theory, communication theory, and cryptography. In 1996, Ajtai published his breakthrough idea how to create lattice-based oneway functions based on the worst-case hardness of an approximate version of SVP. Worst-case hardness is one of the outstanding properties of all modern lattice-based cryptographic schemes. Furthermore, there are no sub-exponential time algorithms known solving SVP, even on potential, strong quantum computers. These facts distinguish the shortest vector problem as a good basis for modern cryptography. In order to theoretically assess the security of lattice-based cryptosystems, knowledge of the asymptotic runtime of SVP solvers is an important issue. For selection of practical parameters however, the average-case behaviour of these algorithms is at least as important. SVP solvers are applied as subroutine in so-called lattice basis reduction algorithms. These build the cornerstone of the fastest attacks on lattice-based cryptosystems. Therefore, improving SVP algorithms directly affects the fastest practical attacks on lattice-based cryptosystems. Building on existing serial SVP algorithms, this thesis presents multiple approaches towards estimating the practical hardness of the shortest vector problem. We employ various special hardware, ranging from multicore CPUs and graphics cards to “supercomputers” and compute clouds. We develop parallel algorithms and assess their practical running times and scalability. Among others, we present our parallel version of the Extreme Pruning Enumeration algorithm, the currently fastest SVP solver available worldwide. Our implementation set the current records in the SVP challenge, the mostly deployed public SVP solver competition. The influence of our work on the security of lattice-based cryptosystems is twofold. First, we help assessing the strength of worst-case problems that build the theoretical basement of lattice-based cryptography. Second, we show how to improve the fastest practical attacks on these systems in the average case. As further result, we present a variant of the sieving algorithm to solve the shortest vector problem in ideal lattices. Ideal lattices are the most important type of lattices in cryptography. Our algorithm is the first to exploit their special structure, allowing us to find shortest vectors faster than in regular lattices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sieving for shortest vectors in ideal lattices: a practical perspective

The security of many lattice-based cryptographic schemes relies on the hardness of finding short vectors in integral lattices. We propose a new variant of the parallel Gauss sieve algorithm to compute such short vectors. It combines favorable properties of previous approaches resulting in reduced run time and memory requirement per node. Our publicly available implementation outperforms all pre...

متن کامل

Sieving for Shortest Vectors in Ideal Lattices

Lattice based cryptography is gaining more and more importance in the cryptographic community. It is a common approach to use a special class of lattices, so-called ideal lattices, as the basis of lattice based crypto systems. This speeds up computations and saves storage space for cryptographic keys. The most important underlying hard problem is the shortest vector problem. So far there is no ...

متن کامل

A new transference theorem and applications to Ajtai's connection factor

We prove a new transference theorem in the geometry of numbers, giving optimal bounds relating the successive minima of a lattice with the minimal length of generating vectors of its dual. It generalizes the transference theorem due to Banaszczyk. We also prove a stronger bound for the special class of lattices possessing n-unique shortest lattice vectors. The theorems imply consequent improvem...

متن کامل

A Deterministic Single Exponential Time Algorithm for Most Lattice Problems

We give deterministic Õ(2)-time algorithms to solve all the most important computational problems on point lattices in NP, including the Shortest Vector Problem (SVP), Closest Vector Problem (CVP), and Shortest Independent Vectors Problem (SIVP). This improves the n running time of the best previously known algorithms for CVP (Kannan, Math. Operation Research 12(3):415-440, 1987) and SIVP (Micc...

متن کامل

Parallel Gauss Sieve Algorithm: Solving the SVP in the Ideal Lattice of 128 dimensions

In this paper, we report that we have solved the shortest vector problem (SVP) over a 128-dimensional lattice, which is currently the highest dimension of the SVP that has ever been solved. The security of lattice-based cryptography is based on the hardness of solving the SVP in lattices. In 2010 Micciancio et al. proposed a Gauss Sieve algorithm for heuristically solving the SVP using list L o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011