Mechanism of proton-coupled quinone reduction in Photosystem II.

نویسندگان

  • Keisuke Saito
  • A William Rutherford
  • Hiroshi Ishikita
چکیده

Photosystem II uses light to drive water oxidation and plastoquinone (PQ) reduction. PQ reduction involves two PQ cofactors, Q(A) and Q(B), working in series. Q(A) is a one-electron carrier, whereas Q(B) undergoes sequential reduction and protonation to form Q(B)H(2). Q(B)H(2) exchanges with PQ from the pool in the membrane. Based on the atomic coordinates of the Photosystem II crystal structure, we analyzed the proton transfer (PT) energetics adopting a quantum mechanical/molecular mechanical approach. The potential-energy profile suggests that the initial PT to Q(B)(•-) occurs from the protonated, D1-His252 to Q(B)(•)(-) via D1-Ser264. The second PT is likely to occur from D1-His215 to Q(B)H(-) via an H-bond with an energy profile with a single well, resulting in the formation of Q(B)H(2) and the D1-His215 anion. The pathway for reprotonation of D1-His215(-) may involve bicarbonate, D1-Tyr246 and water in the Q(B) site. Formate ligation to Fe(2+) did not significantly affect the protonation of reduced Q(B), suggesting that formate inhibits Q(B)H(2) release rather than its formation. The presence of carbonate rather than bicarbonate seems unlikely because the calculations showed that this greatly perturbed the potential of the nonheme iron, stabilizing the Fe(3+) state in the presence of Q(B)(•-), a situation not encountered experimentally. H-bonding from D1-Tyr246 and D2-Tyr244 to the bicarbonate ligand of the nonheme iron contributes to the stability of the semiquinones. A detailed mechanistic model for Q(B) reduction is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosysem II: where does the light-induced voltage come from?

Photosystem II (PS II) is a biological energy transducer. The enzyme catalyses the light-driven oxidation of water and reduction of plastoquinone. The aim of this work was to review the mechanisms of electrical events in PS II. The major contribution to the total photoelectric response is due to the charge-separation between the primary chlorophyll donor P680 and quinone acceptor QA accompanied...

متن کامل

Studies on Effect of Certain Quinones: I. Electron Transport, Photophosphorylation, and CO(2) Fixation in Isolated Chloroplasts.

The effect of quinone herbicides and fungicides on photosynthetic reactions in isolated spinach (Spinacia oleracea) chloroplasts was investigated. 2,3-Dichloro-1,4-naphthoquinone (dichlone), 2-amino-3-chloro-1,4-naphthoquinone (06K-quinone), and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) inhibited ferricyanide reduction as well as ATP formation. Benzoquinone had little or no effect on the...

متن کامل

Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides...

متن کامل

Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.

Seasonal differences have been observed in the ability of desiccated mosses to dissipate absorbed light energy harmlessly into heat. During the dry summer season desiccation-tolerant mosses were more protected against photo-oxidative damage in the dry state than during the more humid winter season. Investigation of the differences revealed that phototolerance could be acquired or lost even unde...

متن کامل

Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation.

Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 3  شماره 

صفحات  -

تاریخ انتشار 2013