Random Walks Revisited: Extensions of Pollard's Rho Algorithm for Computing Multiple Discrete Logarithms
نویسندگان
چکیده
This paper extends the analysis of Pollard’s rho algorithm for solving a single instance of the discrete logarithm problem in a finite cyclic group G to the case of solving more than one instance of the discrete logarithm problem in the same group G. We analyze Pollard’s rho algorithm when used to iteratively solve all the instances. We also analyze the situation when the goal is to solve any one of the multiple instances using any DLP algorithm.
منابع مشابه
Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms
We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group G. Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound O. p jGj/ by a factor of p log jGj and are based on mixing time estimates f...
متن کاملBetter Random Walks for Pollard's Rho Method
We consider Pollard's rho method for discrete logarithm computation. In the analysis of its running time, the crucial assumption is made that a random walk in the underlying group is simulated. We show that this assumption does not exactly hold for the walk originally suggested by Pollard. We study alternative walks that can be eeciently applied to compute discrete logarithms. We introduce a cl...
متن کاملOn random walks for Pollard's rho method
We consider Pollard’s rho method for discrete logarithm computation. Usually, in the analysis of its running time the assumption is made that a random walk in the underlying group is simulated. We show that this assumption does not hold for the walk originally suggested by Pollard: its performance is worse than in the random case. We study alternative walks that can be efficiently applied to co...
متن کاملComputing elliptic curve discrete logarithms with the negation map
It is clear that the negation map can be used to speed up the computation of elliptic curve discrete logarithms with the Pollard rho method. However, the random walks defined on elliptic curve points equivalence class {±P} used by Pollard rho will always get trapped in fruitless cycles. We propose an efficient alternative approach to resolve fruitless cycles. Besides the theoretical analysis, w...
متن کاملOn the Efficiency of Pollard's Rho Method for Discrete Logarithms
Pollard’s rho method is a randomized algorithm for computing discrete logarithms. It works by defining a pseudo-random sequence and then detecting a match in the sequence. Many improvements have been proposed, while few evaluation results and efficiency suggestions have been reported. This paper is devoted to a detailed study of the efficiency issues in Pollard’s rho method. We describe an empi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001