Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis.
نویسندگان
چکیده
The Dio2 gene encodes the type 2 deiodinase (D2) that activates thyroxine (T4) to 3,3',5-triiodothyronine (T3), the disruption of which (Dio2(-/-)) results in brown adipose tissue (BAT)-specific hypothyroidism in an otherwise euthyroid animal. In the present studies, cold exposure increased Dio2(-/-) BAT sympathetic stimulation approximately 10-fold (normal approximately 4-fold); as a result, lipolysis, as well as the mRNA levels of uncoupling protein 1, guanosine monophosphate reductase, and peroxisome proliferator-activated receptor gamma coactivator 1, increased well above the levels detected in the cold-exposed wild-type animals. The sustained Dio2(-/-) BAT adrenergic hyperresponse suppressed the three- to fourfold stimulation of BAT lipogenesis normally seen after 24-48 h in the cold. Pharmacological suppression of lipogenesis with betabeta'-methyl-substituted alpha-omega-dicarboxylic acids of C14-C18 in wild-type animals also impaired adaptive thermogenesis in the BAT. These data constitute the first evidence that reduced adrenergic responsiveness does not limit cold-induced adaptive thermogenesis. Instead, the resulting compensatory hyperadrenergic stimulation prevents the otherwise normal stimulation in BAT lipogenesis during cold exposure, rapidly exhausting the availability of fatty acids. The latter is the preponderant determinant of the impaired adaptive thermogenesis and hypothermia in cold-exposed Dio2(-/-) mice.
منابع مشابه
The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue.
Type 2 iodothyronine deiodinase (D2) is a selenoenzyme, the product of the recently cloned cAMP-dependent Dio2 gene, which increases 10- to 50-fold during cold stress only in brown adipose tissue (BAT). Here we report that despite a normal plasma 3,5,3'-triiodothyronine (T3) concentration, cold-exposed mice with targeted disruption of the Dio2 gene (Dio2(-/-)) become hypothermic due to impaired...
متن کاملThe role of uncoupling proteins in the regulation of metabolism.
Investigations of variations in metabolic efficiency and thermogenesis have a short and turbulent history. In small animals, non-shivering thermogenesis and diet-induced thermogenesis have a great impact on overall body weight, and the question is whether mechanisms to waste energy have evolved also in human energy metabolism. The candidate molecules for this adaptive thermogenesis are the unco...
متن کاملHypoxia-independent angiogenesis in adipose tissues during cold acclimation.
The molecular mechanisms of angiogenesis in relation to adipose tissue metabolism remain poorly understood. Here, we show that exposure of mice to cold led to activation of angiogenesis in both white and brown adipose tissues. In the inguinal depot, cold exposure resulted in elevated expression levels of brown-fat-associated proteins, including uncoupling protein-1 (UCP1) and PGC-1alpha. Proang...
متن کاملLack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment.
Stearoyl-CoA desaturase (SCD) is a microsomal enzyme involved in the biosynthesis of oleate and palmitoleate. Mice with a targeted disruption of the SCD1 isoform (SCD1-/-) exhibit reduced adiposity and increased energy expenditure. To address whether the energy expenditure is attributable to increased thermogenesis, we investigated the effect of SCD1 deficiency on basal and cold-induced thermog...
متن کاملBrown fat is essential for cold-induced thermogenesis but not for obesity resistance in aP2-Ucp mice.
The role of brown adipose tissue in total energy balance and cold-induced thermogenesis was studied. Mice expressing mitochondrial uncoupling protein 1 (UCP-1) from the fat-specific aP2 gene promoter (heterozygous and homozygous aP2-Ucp transgenic mice) and their nontransgenic C57BL6/J littermates were used. The transgenic animals are resistant to obesity induced by a high-fat diet, presumably ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 53 3 شماره
صفحات -
تاریخ انتشار 2004