Abelian Varieties of Weil Type and Kuga-satake Varieties
نویسنده
چکیده
We analyze the relationship between abelian fourfolds of Weil type and Hodge structures of type K3, and we extend some of these correspondences to the case of arbitrary dimension.
منابع مشابه
Kuga-satake Varieties and the Hodge Conjecture
Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...
متن کاملCohomology of Torus Bundles over Kuga Fiber Varieties
A Kuga fiber variety is a family of abelian varieties parametrized by a locally symmetric space and is constructed by using an equivariant holomorphic map of Hermitian symmetric domains. We construct a complex torus bundle T over a Kuga fiber variety Y parametrized by X and express its cohomology H∗(T ,C) in terms of the cohomology of Y as well as in terms of the cohomology of the locally symme...
متن کاملHalf Twists of Hodge Structures of Cm-type
To a Hodge structure V of weight k with CM by a field K we associate Hodge structures V −n/2 of weight k + n for n positive and, under certain circumstances, also for n negative. We show that these ‘half twists’ come up naturally in the Kuga-Satake varieties of weight two Hodge structures with CM by an imaginary quadratic field.
متن کاملReal multiplication on K3 surfaces and Kuga Satake varieties
The endomorphism algebra of a K3 type Hodge structure is a totally real field or a CM field. In this paper we give a low brow introduction to the case of a totally real field. We give existence results for the Hodge structures, for their polarizations and for certain K3 surfaces. We consider the Kuga Satake variety of these Hodge structures and we discuss some examples. Finally we indicate vari...
متن کاملEfficient Pairing Computation with Theta Functions
In this paper, we present a new approach based on theta functions to compute Weil and Tate pairings. A benefit of our method, which does not rely on the classical Miller’s algorithm, is its generality since it extends to all abelian varieties the classical Weil and Tate pairing formulas. In the case of dimension 1 and 2 abelian varieties our algorithms lead to implementations which are efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008