GPU performance prediction using parametrized models
نویسندگان
چکیده
منابع مشابه
Improving the GPU performance prediction models to design space exploration
Recently, GPUs have also been used plenty in the scientific calculations for high-performance in parallel computing power and low energy consumption. Offering GPU performance prediction models base on Micro-architecture parameters to optimal design in the hardware process of the GPU, has been the subject of prior works. In this article, we defined design space NVIDIA Fermi GPU bigger than the p...
متن کاملGPU Performance Prediction Through Parallel Discrete Event Simulation and Common Sense
We present the GPU Module of a Performance Prediction Toolkit developed at Los Alamos National Laboratory, which enables code developers to efficiently test novel algorithmic ideas particularly for large-scale computational physics codes. The GPU Module is a heavily-parameterized model of the GPU hardware that takes as input a sequence of abstracted instructions that the user provides as a repr...
متن کاملFast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملEmpirical performance modeling of GPU kernels using active learning
We focus on a design-of-experiments methodology for developing empirical performance models of GPU kernels. Recently, we developed an iterative active learning algorithm that adaptively selects parameter configurations in batches for concurrent evaluation on CPU architectures in order to build performance models over the parameter space. In this paper, we illustrate the adoption of the algorith...
متن کاملAccelerated Parallel Training of Logistic Regression using OpenCL
This paper presents an accelerated approach for training logistic regression in parallel and running on Graphics Processing Units (GPU). Many prediction applications employed logistic regression for building an accomplished prediction model. This process requires a long time of training and building an accurate prediction model. Many scientists have worked out in boosting performance of logisti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011