Discovery in Hydrating Plaster Using Machine Learning Methods

نویسندگان

  • Judith Ellen Devaney
  • John G. Hagedorn
چکیده

We apply multiple machine learning methods to obtain concise rules that are highly predictive of scientifically meaningful classes in hydrating plaster over multiple time periods. We use three dimensional data obtained through X-ray microtomography at greater than one micron resolution per voxel at five times in the hydration process: powder, after 4 hours, 7 hours, 15.5 hours, and after 6 days of hydration. Using statistics based on locality, we create vectors containing eight attributes for subsets of size 100 of the data and use the autoclass unsupervised classification system to label the attribute vectors into three separate classes. Following this, we use the C5 decision tree software to separate the three classes into two parts: class 0 and 1, and class 0 and 2. We use our locally developed procedural genetic programming system, GPP, to create simple rules for these. The resulting collection of simple rules are tested on a separate 100 subset of the plaster datasets that had been labeled with their autoclass predictions. The rules were found to have both high sensitivity and high positive predictive value. The classes accurately identify important structural comonents in the hydrating plaster. Morover, the rules identify the center of the local distribution as a critical factor in separating the classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Genetic Programming in Describing the Microscopic Structure of Hydrating Plaster

We apply genetic programming in conjunction with other machine learning methods to obtain concise rules that accurately identify scientifically meaningful components in hydrating plaster over multiple time periods. Genetic programming enables the derivation of understandable rules from otherwise opaque classifications. Our study was based on three dimensional data obtained through X-ray microto...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

The Visible Cement Data Set

With advances in x-ray microtomography, it is now possible to obtain three-dimensional representations of a material's microstructure with a voxel size of less than one micrometer. The Visible Cement Data Set represents a collection of 3-D data sets obtained using the European Synchrotron Radiation Facility in Grenoble, France in September 2000. Most of the images obtained are for hydrating por...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002