Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis
نویسندگان
چکیده
We consider the stiffness matrices coming from the Galerkin B-spline isogeometric analysis approximation of classical elliptic problems. By exploiting specific spectral properties compactly described by a symbol, we design efficient multigrid methods for the fast solution of the related linear systems. We prove the optimality of the two-grid methods (in the sense that their convergence rate is independent of the matrix size) for spline degrees up to 3, both in the 1D and 2D case. Despite the theoretical optimality, the convergence rate of the two-grid methods with classical stationary smoothers worsens exponentially when the spline degrees increase. With the aid of the symbol, we provide a theoretical explanation of this exponential worsening and by a proper factorization of the symbol we provide a preconditioned conjugate gradient ‘smoother’, in the spirit of the multi-iterative strategy, that allows us to obtain a good convergence rate independent both of the matrix size and of the spline degrees. A selected set of numerical experiments confirms the effectiveness of our proposal and the numerical optimality with a uniformly high convergence rate, also for the V-cycle multigrid method and large spline degrees.
منابع مشابه
Robust and optimal multi-iterative techniques for IgA Galerkin linear systems
We consider fast solution methods for large linear systems arising from the Galerkin approximation based on B-splines of classical ddimensional elliptic problems, d ≥ 1, in the context of isogeometric analysis. Our ultimate goal is to design iterative algorithms with the following two properties. First, their computational cost is optimal, that is linear with respect to the number of degrees of...
متن کاملJOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction
The fast solution of linear systems arising from an isogeometric discretization of a partial differential equation is of great importance for the practical use of Isogeometric Analysis. For classical finite element discretizations, multigrid methods are well known to be fast solvers showing optimal convergence behavior. However, if a geometric multigrid solver is naively applied to a linear sys...
متن کاملRobust and optimal multi-iterative techniques for IgA collocation linear systems
We consider fast solvers for the large linear systems coming from the Isogeometric Analysis (IgA) collocation approximation based on B-splines of full elliptic d-dimensional Partial Differential Equations (PDEs). We are interested in designing iterative algorithms which are optimal and robust. The former property implies that the computational cost is linear with respect to the number of degree...
متن کاملA Robust Multigrid Method for Isogeometric Analysis using Boundary Correction
The fast solution of linear systems arising from an isogeometric discretization of a partial differential equation is of great importance for the practical use of Isogeometric Analysis. For classical finite element discretizations, multigrid methods are well known to be fast solvers showing optimal convergence behavior. However, if a geometric multigrid solver is naively applied to a linear sys...
متن کاملLusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices
We extend previous results on the spectral distribution of discretization matrices arising from Bspline Isogeometric Analysis (IgA) approximations of a general d-dimensional second-order elliptic Partial Differential Equation (PDE) with variable coefficients. First, we provide the spectral symbol of the Galerkin B-spline IgA stiffness matrices, assuming only that the PDE coefficients belong to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2017