Solving delay differential equations by the five-point one-step block method using Neville's interpolation

نویسندگان

  • Z. A. Majid
  • H. M. Radzi
  • F. Ismail
چکیده

A five-point one-step block method based on the Newton backward divided difference formulae for the solution of first-order delay differential equations is derived. The proposed block method will approximate the solutions of initial value problems at five points simultaneously using variable step size. The approximation of the delay term is calculated using Neville's interpolation. The block method will be formulated in terms of linear multistep method, but the method is equivalent to one-step method. The order of the block method will be discussed. The P-stability and Q-stability regions of the block method using Neville's interpolation for the delay term are presented for a fixed step size. Numerical results are given to show the efficiency of the proposed method and compared with the existing method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION

In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.  

متن کامل

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

Block Methods based on Newton Interpolations for Solving Special Second Order Ordinary Differential Equations Directly

This study focused mainly on the derivation of the 2 and 3-point block methods with constant coefficients for solving special second order ordinary differential equations directly based on Newton-Gregory backward interpolation formula. The performance of the new methods was compared with the conventional 1-point method using a standard set of test problems. Numerical results were presented to i...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2013